Nothing Special   »   [go: up one dir, main page]

Skip to main content

Supervised Semi-definite Embedding for Email Data Cleaning and Visualization

  • Conference paper
Web Technologies Research and Development - APWeb 2005 (APWeb 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3399))

Included in the following conference series:

Abstract

The Email systems are playing an important and irreplaceable role in the digital world due to its convenience, efficiency and the rapid growth of World Wide Web (WWW). However, most of the email users nowadays are suffering from the large amounts of irrelevant and noisy emails everyday. Thus algorithms which can clean both the noise features and the irrelevant emails are highly desired. In this paper, we propose a novel Supervised Semi-definite Embedding (SSDE) algorithm to reduce the dimension of email data so as to leave out the noise features of them and visualize these emails in a supervised manner to find the irrelevant ones intuitively. Experiments on a set of received emails of several volunteers during a period of time and some benchmark datasets show the comparable performance of the proposed SSDE algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison Wesley Longman, Amsterdam (1999)

    Google Scholar 

  2. Balasubramanian, M., Schwartz, E.L., Tenenbaum, J.B., de Silva, V., Langford, J.C.: The Isomap Algorithm and Topological Stability. Science 295

    Google Scholar 

  3. Borchers, B.: CSDP, a C Library for Semidefinite Programming. Optimization Methods and Software 11, 613–623

    Google Scholar 

  4. Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases. University of California, Department of Information and Computer Science, Irvine

    Google Scholar 

  5. Ducheneaut, N., Bellotti, V.: E-mail as Habitat: An Exploration of Embedded Personal Information Management. Interactions 8, 30–38

    Google Scholar 

  6. Jolliffe, I.T.: Principal Component Analysis. Springer, Heidelberg (1986)

    Google Scholar 

  7. Mardia, K.V., Kent, J.T., Bibby, J.M.: Multivariate Analysis. Academic Press, London (1979)

    MATH  Google Scholar 

  8. Martinez, A.M., Kak, A.C.: PCA versus LDA. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(2), 228–233

    Google Scholar 

  9. Roweis, S.T., Saul, L.K.: Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290, 2323–2326

    Google Scholar 

  10. Salton, G., McGill, M.J.: Introduction to Modern Retrieval. McGraw-Hill Book Company, New York (1983)

    MATH  Google Scholar 

  11. Saul, L.K., Roweis, S.T.: Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifolds. Machine Learning Research 4, 119–155

    Google Scholar 

  12. Seber, G.A.F., Wild, C.J.: Nonlinear regression. Wiley, New York (1989)

    Book  MATH  Google Scholar 

  13. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software, 625–653

    Google Scholar 

  14. Torkkola, K.: Linear Discriminant Analysis in Document Classification. In: Proceedings of the, pp. 800–806 (2001)

    Google Scholar 

  15. Vandenberghe, L., Boyd, S.: Semidefinite Programming. SIAM Review 38, 49–95

    Google Scholar 

  16. Vlachos, M., Domeniconi, C., Gunopulos, D., Koudas, G.K.: Non-Linear Dimensionality Reduction Techniques for Classification and Visualization. In: Proceedings of the 8th SIGKDD, Edmonton, Canada, pp. 645–651 (2002)

    Google Scholar 

  17. Weinberger, K.Q., Saul, L.K.: Unsupervised Learning of Image Manifolds by Semidefinite Programming. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,CVPR, Washington, DC (2004)

    Google Scholar 

  18. Weinberger, K.Q., Sha, F., Saul, L.K.: Learning a Kernel Matrix for Nonlinear Dimensionality Reduction. In: Proceedings of the 21 International Conference on Machine Learning, Ban, Canada (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, N., Bai, F., Yan, J., Zhang, B., Chen, Z., Ma, WY. (2005). Supervised Semi-definite Embedding for Email Data Cleaning and Visualization. In: Zhang, Y., Tanaka, K., Yu, J.X., Wang, S., Li, M. (eds) Web Technologies Research and Development - APWeb 2005. APWeb 2005. Lecture Notes in Computer Science, vol 3399. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31849-1_93

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31849-1_93

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25207-8

  • Online ISBN: 978-3-540-31849-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics