Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Hypocoloring Problem: Complexity and Approximability Results when the Chromatic Number Is Small

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3353))

Included in the following conference series:

  • 1442 Accesses

Abstract

We consider a weighted version of the subcoloring problem that we call the hypocoloring problem: given a weighted graph G=(V,E;w) where w(v)≥ 0, the goal consists in finding a partition \({\cal S}=(S_1,\ldots,S_k)\) of the node set of G into hypostable sets and minimizing ∑\(_{i=1}^{k}\) w(S i ) where an hypostable S is a subset of nodes which generates a collection of node disjoint cliques K. The weight of S is defined as max { ∑  v ∈ K w(v)| K ∈ S}. Properties of hypocolorings are stated; complexity and approximability results are presented in some graph classes. The associated decision problem is shown to be NP-complete for bipartite graphs and triangle-free planar graphs with maximum degree 3. Polynomial algorithms are given for graphs with maximum degree 2 and for trees with maximum degree Δ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albertson, M.O., Jamison, R.E., Hedetniemi, S.T., Locke, S.C.: The subchromatic number of a graph. Discrete Math. 74, 33–49 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beineke, L.W., White, A.T.: Selected topics in graph theory. Academic Press, London (1978)

    MATH  Google Scholar 

  3. Berge, C.: Graphs and Hypergraphs. North Holland, Amsterdam (1973)

    MATH  Google Scholar 

  4. Bodlaender, H.L., Jansen, K., Woeginger, G.J.: Scheduling with incompatible jobs. Discrete Appl. Math. 55, 219–232 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Borowiecki, M., Broere, I., Frick, M., Mihok, P., Semanisin, G.: Survey of hereditary properties of graphs. Discussiones Mathematicae-Graph Theory 17, 5–50 (1997)

    MATH  MathSciNet  Google Scholar 

  6. Boudhar, M., Finke, G.: Scheduling on a batch machine with job compatibilities. Jorbel 40, 69–80 (2000)

    MATH  MathSciNet  Google Scholar 

  7. Broersma, H., Fomin, F.V., Nešetřil, J., Woeginger, G.J.: More about subcolorings (extended abstract). In: Kučera, L. (ed.) WG 2002. LNCS, vol. 2573, pp. 68–79. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Brooks, R.L.: On colouring the nodes of a network. In: Proc. Cambridge Phil. Soc., vol. 37, pp. 194–197 (1941)

    Google Scholar 

  9. Brown, J.L., Corneil, D.G.: On generalized graph colorings. J. Graph Theory 11, 87–99 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  10. Demange, M., de Werra, D., Monnot, J., Paschos, V.T.: Weighted node coloring: When stable sets are expensive. In: Kučera, L. (ed.) WG 2002. LNCS, vol. 2573, pp. 114–125. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Dillon, M.R.: Conditionnal coloring, Ph.D. thesis, University of Colorado at Denver (1998)

    Google Scholar 

  12. Feige, U., Kilian, J.: Zero knowledge and the chromatic number. J. Comput.System Sci. 57, 187–199 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fiala, J., Jansen, K., Le, V.B., Seidel, E.: Graph subcolorings: Complexity and algorithms. In: Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 154–165. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Garey, M.R., Johnson, D.S.: Computers and intractability. a guide to the theory of NP-completeness. Freeman, CA (1979)

    Google Scholar 

  15. Grotzsch, H.: Ein dreifarbensatz fur dreikreisfreie netze auf der kugel, Wiss. Z. Martin Luther Univ. Halle-Wittenberg, Math. Naturwiss Reihe 8, 109–120 (1959)

    Google Scholar 

  16. Harary, F.: Conditional colorability in graphs, in Graphs and Applications. In: Harary, F., Maybee, J. (eds.) Proc. First Colo. Symp. graph theory. Wiley intersci., Publ, N.Y (1985)

    Google Scholar 

  17. Lovász, L.: On decomposition of graphs. Stud. Sci. Math. Hung. 1, 237–238 (1966)

    MATH  Google Scholar 

  18. Mutzel, P., Odenthal, T., Scharbrodt, M.: The thickness of graphs: A survey (1998)

    Google Scholar 

  19. Rendl, F.: On the complexity of decomposing matrices arising in satellite communication. Operations Research Letters 4, 5–8 (1985)

    Article  MATH  Google Scholar 

  20. Schaefer, T.J.: The complexity of satisfiability problems. In: Proc. STOC, pp. 216–226 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Werra, D., Demange, M., Monnot, J., Paschos, V.T. (2004). The Hypocoloring Problem: Complexity and Approximability Results when the Chromatic Number Is Small. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds) Graph-Theoretic Concepts in Computer Science. WG 2004. Lecture Notes in Computer Science, vol 3353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30559-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30559-0_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24132-4

  • Online ISBN: 978-3-540-30559-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics