Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Spiking Oscillator with Quantized State and Its Pulse Coding Characteristics

  • Conference paper
Neural Information Processing (ICONIP 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3316))

Included in the following conference series:

  • 90 Accesses

Abstract

This paper studies a quantized spiking oscillator that can be implemented by a simple electronic circuit. The oscillator can have huge variety of stable periodic spike-trains and generates one of them depending on an initial state. Using a spike position modulation, the output spike-train can be coded by a digital sequence. We then clarify basic characteristics of the co-existing spike-trains and the pulse coding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Torikai, H., Saito, T.: Analysis of a quantized chaotic system. Int. J. Bif. and Chaos 12(5), 1207–1218 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Hamanaka, H., Torikai, H., Saito, T.: Spike position map with quantized state and its application to algorithmic A/D converter. In: Proc. of IEEE/ISCAS (2004) (accepted)

    Google Scholar 

  3. Signell, S., Jonsson, B., Stenstrom, H., Tan, N.: New A/D converter architectures based on Gray coding. In: Proc. of IEEE/ISCAS, pp. 413–416 (1997)

    Google Scholar 

  4. Torikai, H., Saito, T.: Synchronization phenomena in pulse-coupled networks driven by spike-train inputs. IEEE Trans. Neural Networks 15(2) (2004)

    Google Scholar 

  5. Lee, G., Farhat, N.H.: The bifurcating neuron network 2. Neural networks 15, 69–84 (2002)

    Article  Google Scholar 

  6. Campbell, S.R., Wang, D., Jayaprakash, C.: Synchrony and desynchrony in integrateand-fire oscillators. Neural computation 11, 1595–1619 (1999)

    Article  Google Scholar 

  7. Special issue on Pulse Coupled Neural Network. IEEE Trans. Neural Networks 10(3) (1999)

    Google Scholar 

  8. Maggio, G.M., Rulkov, N., Reggiani, L.: Pseudo-chaotic time hopping for UWB impulse radio. IEEE Trans. CAS-I 48(12), 1424–1435 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Wolfram, S.: Universality and complexity in cellular automata. Pysica D 10, 1–35 (1984)

    Article  Google Scholar 

  10. Davies, A.C.: Digital counters and pseudorandom number generators from a perspective of dynamics. In: Nonlinear Dynamics of Electronic Systems, NDES, pp. 373–382 (1994)

    Google Scholar 

  11. Frey, D.R.: Chaotic digital encoding: an approach to secure communication. IEEE Trans. CAS-II 40(10), 660–666 (1993)

    MathSciNet  Google Scholar 

  12. Ott, E.: Chaos in Dynamical Systems. Cambridge Univ. Press, Cambridge (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hamanaka, H., Torikai, H., Saito, T. (2004). A Spiking Oscillator with Quantized State and Its Pulse Coding Characteristics. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds) Neural Information Processing. ICONIP 2004. Lecture Notes in Computer Science, vol 3316. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30499-9_174

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30499-9_174

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23931-4

  • Online ISBN: 978-3-540-30499-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics