Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Topological Framework for the Specification and the Simulation of Discrete Dynamical Systems

  • Conference paper
Cellular Automata (ACRI 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3305))

Included in the following conference series:

Abstract

MGS is an experimental programming language for the modeling and the simulation of discrete dynamical systems. The modeling approach is based on the explicit specification of the interaction structure between the system parts. This interaction structure is adequately described by topological notions. The topological approach enables a unified view on several computational mechanisms initially inspired by biological or chemical processes (Gamma and cellular automata). The expressivity of the language is illustrated by the modeling of a diffusion limited aggregation process on a wide variety of spatial domain: from cayley graphs to arbitrary quasi-manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Banâtre, J.-P., Fradet, P., Le Métayer, D.: Gamma and the chemical reaction model: Fifteen years after. In: Calude, C.S., Pun, G., Rozenberg, G., Salomaa, A. (eds.) Multiset Processing. LNCS, vol. 2235, p. 17. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Giavitto, J.-L.: Invited talk: Topological collections, transformations and their application to the modeling and the simulation of dynamical systems. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 208–233. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Giavitto, J.-L., Michel, O.: Declarative definition of group indexed data structures and approximation of their domains. In: Proceedings of the 3rd International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming (PPDP 2001). ACM Press, New York (2001)

    Google Scholar 

  4. Giavitto, J.-L., Michel, O.: The topological structures of membrane computing. Fundamenta Informaticae 49, 107–129 (2002)

    MathSciNet  Google Scholar 

  5. Giavitto, J.-L., Michel, O.: Modeling the topological organization of cellular processes. BioSystems 70(2), 149–163 (2003)

    Article  Google Scholar 

  6. Giavitto, J.-L., Malcolm, G., Michel, O.: Rewriting systems and the modelling of biological systems. Comparative and Functional Genomics 5, 95–99 (2004)

    Article  Google Scholar 

  7. Giavitto, J.-L., Michel, O., Sansonnet, J.-P.: Group based fields. In: Queinnec, C., Halstead Jr., R.H., Ito, T. (eds.) PSLS 1995. LNCS, vol. 1068, pp. 209–215. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  8. Leroy, X.: The Objective Caml system (1996), Software and documentation available on the web at http://pauillac.inria.fr/ocaml/

  9. Lienhardt, P.: Topological models for boundary representation: a comparison with n-dimensional generalized maps. Computer-Aided Design 23(1), 59–82 (1991)

    Article  MATH  Google Scholar 

  10. Lindenmayer, A.: Mathematical models for cellular interaction in development, Parts I and II. Journal of Theoretical Biology 18, 280–315 (1968)

    Article  Google Scholar 

  11. Munkres, J.: Elements of Algebraic Topology. Addison-Wesley, Reading (1984)

    MATH  Google Scholar 

  12. Róka, Z.: One-way cellular automata on Cayley graphs. Theoretical Computer Science 132(1-2), 259–290 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Shafarevich, I.: Basic Notions of Algebra. Springer, Heidelberg (1990)

    MATH  Google Scholar 

  14. Toffoli, T., Margolus, N.: Cellular automata machines: a new environment for modeling. MIT Press, Cambridge (1987)

    Google Scholar 

  15. Tonti, E.: The algebraic-topological structure of physical theories. In: Glockner, P.G., Sing, M.C. (eds.) Symmetry, similarity and group theoretic methods in mechanics, Calgary, Canada, August 1974, pp. 441–467 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Spicher, A., Michel, O., Giavitto, JL. (2004). A Topological Framework for the Specification and the Simulation of Discrete Dynamical Systems. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds) Cellular Automata. ACRI 2004. Lecture Notes in Computer Science, vol 3305. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30479-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30479-1_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23596-5

  • Online ISBN: 978-3-540-30479-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics