Nothing Special   »   [go: up one dir, main page]

Skip to main content

Unbiased Errors-In-Variables Estimation Using Generalized Eigensystem Analysis

  • Conference paper
Statistical Methods in Video Processing (SMVP 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3247))

Included in the following conference series:

Abstract

Recent research provided several new and fast approaches for the class of parameter estimation problems that are common in computer vision. Incorporation of complex noise model (mostly in form of covariance matrices) into errors-in-variables or total least squares models led to a considerable improvement of existing algorithms.

However, most algorithms can only account for covariance of the same measurement – but many computer vision problems, e.g. gradient-based optical flow estimation, show correlations between different measurements.

In this paper, we will present a new method for improving TLS based estimation with suitably chosen weights and it will be shown how to compute them for general noise models. The new method is applicable to a wide class of problems which share the same mathematical core. For demonstration purposes, we have chosen ellipse fitting as a experimental example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 1st edn. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Abatzoglou, T., Mendel, J., Harada, G.: The constrained total least squares technique and its applications to harmonic superresolution. IEEE Transactions on Signal Processing 3, 1070–1087 (1991)

    Article  MATH  Google Scholar 

  3. van Huffel, S., Vandewalle, J.: The Total Least Squares problem: Computational aspects and analysis. SIAM (Society for Industrial and Applied Mathematics), Philadelphia (1991)

    Book  MATH  Google Scholar 

  4. Irani, M., Anandan, P.: Factorization with uncertainty. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 539–553. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Matei, B., Meer, P.: A general method for errors-in-variables problems in computer vision. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 18–25 (2000)

    Google Scholar 

  6. Nestares, O., Fleet, D.J., Heeger, D.J.: Likelihood functions and confidence bounds for Total Least Squares estimation. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2000), Hilton Head, pp. 523–530 (2000)

    Google Scholar 

  7. Kanatani, K.: Statistical Optimization for Geometric Computation: Theory and Practice. Elsevier, Amsterdam (1996)

    MATH  Google Scholar 

  8. Chojnacki, W., Brooks, M.J., van den Hengel, A., Gawley, D.: On the fitting of surfaces to data with covariances. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 1294–1303 (2000)

    Article  Google Scholar 

  9. Chojnacki, W., Brooks, M.J., van den Hengel, A., Gawley, D.: A new approach to constrained parameter estimation applicable to some computer vision problems. In: Suter, D. (ed.) Proceedings of the Statistical Methods in Video Processing Workshop (2002)

    Google Scholar 

  10. Ng, L., Solo, V.: Errors-in-variables modeling in optical flow estimation. IEEE Transactions on Image Processing 10, 1528–1540 (2001)

    Article  MATH  Google Scholar 

  11. Stewart, G.W.: Stochastic perturbation theory. SIAM Review 32, 576–610 (1990)

    Article  MathSciNet  Google Scholar 

  12. Mühlich, M., Mester, R.: A considerable improvement in non-iterative homography estimation using TLS and equilibration. Pattern Recognition Letters 22 (2001)

    Google Scholar 

  13. Mühlich, M., Mester, R.: The role of total least squares in motion analysis. In: Proc. Europ. Conf. Comp. Vision (1998)

    Google Scholar 

  14. Mühlich, M., Mester, R.: Subspace methods and equilibration in computer vision. Technical Report XP-TR-C-21, J.W.G. University Frankfurt (1999)

    Google Scholar 

  15. Halíř, R., Flusser, J.: Numerically stable direct least squares fitting of ellipses. In: Skala, V. (ed.) Proc. Int. Conf. in Central Europe on Computer Graphics, Visualization and Interactive Digital Media (WSCG 1998), pp. 125–132 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mühlich, M., Mester, R. (2004). Unbiased Errors-In-Variables Estimation Using Generalized Eigensystem Analysis. In: Comaniciu, D., Mester, R., Kanatani, K., Suter, D. (eds) Statistical Methods in Video Processing. SMVP 2004. Lecture Notes in Computer Science, vol 3247. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30212-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30212-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23989-5

  • Online ISBN: 978-3-540-30212-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics