Nothing Special   »   [go: up one dir, main page]

Skip to main content

(Smart) Look-Ahead Arc Consistency and the Pursuit of CSP Tractability

  • Conference paper
Principles and Practice of Constraint Programming – CP 2004 (CP 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3258))

Abstract

The constraint satisfaction problem (CSP) can be formulated as the problem of deciding, given a pair (A,B) of relational structures, whether or not there is a homomorphism from A to B. Although the CSP is in general intractable, it may be restricted by requiring the “target structure” B to be fixed; denote this restriction by CSP(B). In recent years, much effort has been directed towards classifying the complexity of all problems CSP(B). The acquisition of CSP(B) tractability results has generally proceeded by isolating a class of relational structures B believed to be tractable, and then demonstrating a polynomial-time algorithm for the class. In this paper, we introduce a new approach to obtaining CSP(B) tractability results: instead of starting with a class of structures, we start with an algorithm called look-ahead arc consistency, and give an algebraic characterization of the structures solvable by our algorithm. This characterization is used both to identify new tractable structures and to give new proofs of known tractable structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bulatov, A.: Combinatorial problems raised from 2-semilattices. Manuscript

    Google Scholar 

  2. Bulatov, A.A.: A Dichotomy Theorem for Constraints on a Three-Element Set. In: FOCS 2002 (2002)

    Google Scholar 

  3. Bulatov, A.: Malt’sev constraints are tractable. Technical report PRG-RR-02-05, Oxford University (2002)

    Google Scholar 

  4. Bulatov, A.A.: Tractable conservative Constraint Satisfaction Problems. In: LICS 2003 (2003)

    Google Scholar 

  5. Bulatov, A.A., Krokhin, A.A., Jeavons, P.: Constraint Satisfaction Problems and Finite Algebras. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, p. 272. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Bulatov, A., Jeavons, P.: An Algebraic Approach to Multi-sorted Constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 183–198. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Bulatov, A., Jeavons, P.: Algebraic structures in combinatorial problems. Technical report MATH-AL-4-2001, Technische Universitat Dresden (2001)

    Google Scholar 

  8. Bulatov, A., Jeavons, P.: Tractable constraints closed under a binary operation. Technical report PRG-TR-12-00, Oxford University (2000)

    Google Scholar 

  9. Dalmau, V., Pearson, J.: Set Functions and Width 1. In: Constraint Programming 1999 (1999)

    Google Scholar 

  10. del Val, A.: On 2SAT and Renamable Horn. In: AAAI 2000, Proceedings of the Seventeenth (U.S.) National Conference on Artificial Intelligence, Austin, Texas, pp. 279–284 (2000)

    Google Scholar 

  11. Feder, T., Vardi, M.Y.: The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory. SIAM J. Comput. 28(1), 57–104 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jeavons, P.: On the Algebraic Structure of Combinatorial Problems. Theor. Comput. Sci. 200(1-2), 185–204 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jeavons, P.G., Cohen, D.A., Cooper, M.: Constraints, Consistency and Closure. Artificial Intelligence 101(1-2), 251–265 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jeavons, P., Cohen, D.A., Gyssens, M.: Closure properties of constraints. J. ACM 44(4), 527–548 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kolaitis, P.G., Vardi, M.Y.: Conjunctive-Query Containment and Constraint Satisfaction. J. Comput. Syst. Sci. 61(2), 302–332 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kolaitis, P.G., Vardi, M.Y.: A Game-Theoretic Approach to Constraint Satisfaction. In: AAAI 2000 (2000)

    Google Scholar 

  17. Schaefer, T.: The complexity of satisfiability problems. In: Proceedings of the 10th Annual Symposium on Theory of Computing, ACM (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, H., Dalmau, V. (2004). (Smart) Look-Ahead Arc Consistency and the Pursuit of CSP Tractability. In: Wallace, M. (eds) Principles and Practice of Constraint Programming – CP 2004. CP 2004. Lecture Notes in Computer Science, vol 3258. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30201-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30201-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23241-4

  • Online ISBN: 978-3-540-30201-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics