Abstract
This article deals with global constraints for which the set of solutions can be recognized by an extended finite automaton whose size is bounded by a polynomial in n, where n is the number of variables of the corresponding global constraint. By reformulating the automaton as a conjunction of signature and transition constraints we show how to systematically obtain a filtering algorithm. Under some restrictions on the signature and transition constraints this filtering algorithm achieves arc-consistency. An implementation based on some constraints as well as on the metaprogramming facilities of SICStus Prolog is available. For a restricted class of automata we provide a filtering algorithm for the relaxed case, where the violation cost is the minimum number of variables to unassign in order to get back to a solution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amilhastre, J., Fargier, H., Marquis, P.: Consistency restoration and explanations in dynamic CSPs – application to configuration. Artificial Intelligence 135, 199–234 (2002)
Beldiceanu, N.: Global constraints as graph properties on structured network of elementary constaints of the same type. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 52–66. Springer, Heidelberg (2000)
Beldiceanu, N.: Pruning for the minimum constraint family and for the number of distinct values constraint family. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 211–224. Springer, Heidelberg (2001)
Beldiceanu, N., Carlsson, M.: Revisiting the cardinality operator and introducing the cardinality-path constraint family. In: Codognet, P. (ed.) ICLP 2001. LNCS, vol. 2237, pp. 59–73. Springer, Heidelberg (2001)
Beldiceanu, N., Carlsson, M., Petit, T.: Deriving filtering algorithms from constraint checkers. Technical Report T2004-08, Swedish Institute of Computer Science (2004)
Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP. Mathl. Comput. Modelling 20(12), 97–123 (1994)
Beldiceanu, N., Guo, Q., Thiel, S.: Non-overlapping constraints between convex polytopes. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 392–407. Springer, Heidelberg (2001)
Beldiceanu, N., Poder, E.: Cumulated profiles of minimum and maximum resource utilisation. In: Ninth Int. Conf. on Project Management and Scheduling, pp. 96–99 (2004)
Berge, C.: Graphs and hypergraphs. Dunod, Paris (1970)
Boigelot, B., Wolper, P.: Representing arithmetic constraints with finite automata: An overview. In: Stuckey, P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp. 1–19. Springer, Heidelberg (2002)
Bourdais, S., Galinier, P., Pesant, G.: HIBISCUS: A constraint programming application to staff scheduling in health care. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 153–167. Springer, Heidelberg (2003)
Carlsson, M., Beldiceanu, N.: From constraints to finite automata to filtering algorithms. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 94–108. Springer, Heidelberg (2004)
Carlsson, M., et al.: SICStus Prolog User’s Manual. Swedish Institute of Computer Science, 3.11 edition (January 2004), http://www.sics.se/sicstus/
Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint solver. In: Hartel, P.H., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292, pp. 191–206. Springer, Heidelberg (1997)
Cohen, J.: Non-deterministic algorithms. ACM Computing Surveys 11(2), 79–94 (1979)
COSYTEC. CHIP Reference Manual, v5 edition (2003)
Frisch, A., Hnich, B., Kızıltan, Z., Miguel, I., Walsh, T.: Global constraints for lexicographic orderings. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 93–108. Springer, Heidelberg (2002)
Gent, I.P., Walsh, T.: CSPLib: a benchmark library for constraints. Technical Report APES-09-1999, APES (1999), http://www.csplib.org
Van Hentenryck, P., Carillon, J.-P.: Generality vs. specificity: an experience with AI and OR techniques. In: National Conference on Artificial Intelligence, AAAI 1988 (1988)
Janssen, P., Vilarem, M.-C.: Problèmes de satisfaction de contraintes: techniques de résolution et application à la synthèse de peptides. Research Report C.R.I.M., 54 (1988)
Jégou, P.: Contribution à l’étude des problèmes de satisfaction de contraintes: algorithmes de propagation et de résolution. Propagation de contraintes dans les réseaux dynamiques. PhD Thesis (1991)
Maher, M.: Analysis of a global contiguity constraint. In: Workshop on Rule-Based Constraint Reasoning and Programming, held along CP-2002 (2002)
Milano, M.: Constraint and integer programming. Kluwer Academic Publishers, Dordrecht (2004)
Ottosson, G., Thorsteinsson, E., Hooker, J.N.: Mixed global constraints and inference in hybrid IP-CLP solvers. In: CP 1999 Post-Conference Workshop on Large-Scale Combinatorial Optimization and Constraints, pp. 57–78 (1999)
Pesant, G.: A regular language membership constraint for sequence of variables. In: Workshop on Modelling and Reformulation Constraint Satisfaction Problems, pp. 110–119 (2003)
Petit, T., Régin, J.-C., Bessière, C.: Specific filtering algorithms for over-constrained problems. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 451–463. Springer, Heidelberg (2001)
Le Provost, T., Wallace, M.: Domain-independent propagation. In: Proc. of the International Conference on Fifth Generation Computer Systems, pp. 1004–1011 (1992)
Refalo, P.: Linear formulation of constraint programming models and hybrid solvers. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 369–383. Springer, Heidelberg (2000)
Vempaty, N.R.: Solving constraint satisfaction problems using finite state automata. In: National Conference on Artificial Intelligence (AAAI 1992), pp. 453–458. AAAI Press, Menlo Park (1992)
Woeginger, G.J.: Exact algorithms for NP-hard problems: A survey. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink! LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Beldiceanu, N., Carlsson, M., Petit, T. (2004). Deriving Filtering Algorithms from Constraint Checkers. In: Wallace, M. (eds) Principles and Practice of Constraint Programming – CP 2004. CP 2004. Lecture Notes in Computer Science, vol 3258. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30201-8_11
Download citation
DOI: https://doi.org/10.1007/978-3-540-30201-8_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23241-4
Online ISBN: 978-3-540-30201-8
eBook Packages: Springer Book Archive