Nothing Special   »   [go: up one dir, main page]

Skip to main content

Deriving Filtering Algorithms from Constraint Checkers

  • Conference paper
Principles and Practice of Constraint Programming – CP 2004 (CP 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3258))

  • 1671 Accesses

Abstract

This article deals with global constraints for which the set of solutions can be recognized by an extended finite automaton whose size is bounded by a polynomial in n, where n is the number of variables of the corresponding global constraint. By reformulating the automaton as a conjunction of signature and transition constraints we show how to systematically obtain a filtering algorithm. Under some restrictions on the signature and transition constraints this filtering algorithm achieves arc-consistency. An implementation based on some constraints as well as on the metaprogramming facilities of SICStus Prolog is available. For a restricted class of automata we provide a filtering algorithm for the relaxed case, where the violation cost is the minimum number of variables to unassign in order to get back to a solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amilhastre, J., Fargier, H., Marquis, P.: Consistency restoration and explanations in dynamic CSPs – application to configuration. Artificial Intelligence 135, 199–234 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beldiceanu, N.: Global constraints as graph properties on structured network of elementary constaints of the same type. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 52–66. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Beldiceanu, N.: Pruning for the minimum constraint family and for the number of distinct values constraint family. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 211–224. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Beldiceanu, N., Carlsson, M.: Revisiting the cardinality operator and introducing the cardinality-path constraint family. In: Codognet, P. (ed.) ICLP 2001. LNCS, vol. 2237, pp. 59–73. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Beldiceanu, N., Carlsson, M., Petit, T.: Deriving filtering algorithms from constraint checkers. Technical Report T2004-08, Swedish Institute of Computer Science (2004)

    Google Scholar 

  6. Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP. Mathl. Comput. Modelling 20(12), 97–123 (1994)

    Article  MATH  Google Scholar 

  7. Beldiceanu, N., Guo, Q., Thiel, S.: Non-overlapping constraints between convex polytopes. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 392–407. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Beldiceanu, N., Poder, E.: Cumulated profiles of minimum and maximum resource utilisation. In: Ninth Int. Conf. on Project Management and Scheduling, pp. 96–99 (2004)

    Google Scholar 

  9. Berge, C.: Graphs and hypergraphs. Dunod, Paris (1970)

    Google Scholar 

  10. Boigelot, B., Wolper, P.: Representing arithmetic constraints with finite automata: An overview. In: Stuckey, P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp. 1–19. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Bourdais, S., Galinier, P., Pesant, G.: HIBISCUS: A constraint programming application to staff scheduling in health care. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 153–167. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Carlsson, M., Beldiceanu, N.: From constraints to finite automata to filtering algorithms. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 94–108. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Carlsson, M., et al.: SICStus Prolog User’s Manual. Swedish Institute of Computer Science, 3.11 edition (January 2004), http://www.sics.se/sicstus/

  14. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint solver. In: Hartel, P.H., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292, pp. 191–206. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  15. Cohen, J.: Non-deterministic algorithms. ACM Computing Surveys 11(2), 79–94 (1979)

    Article  MATH  Google Scholar 

  16. COSYTEC. CHIP Reference Manual, v5 edition (2003)

    Google Scholar 

  17. Frisch, A., Hnich, B., Kızıltan, Z., Miguel, I., Walsh, T.: Global constraints for lexicographic orderings. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 93–108. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  18. Gent, I.P., Walsh, T.: CSPLib: a benchmark library for constraints. Technical Report APES-09-1999, APES (1999), http://www.csplib.org

  19. Van Hentenryck, P., Carillon, J.-P.: Generality vs. specificity: an experience with AI and OR techniques. In: National Conference on Artificial Intelligence, AAAI 1988 (1988)

    Google Scholar 

  20. Janssen, P., Vilarem, M.-C.: Problèmes de satisfaction de contraintes: techniques de résolution et application à la synthèse de peptides. Research Report C.R.I.M., 54 (1988)

    Google Scholar 

  21. Jégou, P.: Contribution à l’étude des problèmes de satisfaction de contraintes: algorithmes de propagation et de résolution. Propagation de contraintes dans les réseaux dynamiques. PhD Thesis (1991)

    Google Scholar 

  22. Maher, M.: Analysis of a global contiguity constraint. In: Workshop on Rule-Based Constraint Reasoning and Programming, held along CP-2002 (2002)

    Google Scholar 

  23. Milano, M.: Constraint and integer programming. Kluwer Academic Publishers, Dordrecht (2004)

    MATH  Google Scholar 

  24. Ottosson, G., Thorsteinsson, E., Hooker, J.N.: Mixed global constraints and inference in hybrid IP-CLP solvers. In: CP 1999 Post-Conference Workshop on Large-Scale Combinatorial Optimization and Constraints, pp. 57–78 (1999)

    Google Scholar 

  25. Pesant, G.: A regular language membership constraint for sequence of variables. In: Workshop on Modelling and Reformulation Constraint Satisfaction Problems, pp. 110–119 (2003)

    Google Scholar 

  26. Petit, T., Régin, J.-C., Bessière, C.: Specific filtering algorithms for over-constrained problems. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 451–463. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  27. Le Provost, T., Wallace, M.: Domain-independent propagation. In: Proc. of the International Conference on Fifth Generation Computer Systems, pp. 1004–1011 (1992)

    Google Scholar 

  28. Refalo, P.: Linear formulation of constraint programming models and hybrid solvers. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 369–383. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  29. Vempaty, N.R.: Solving constraint satisfaction problems using finite state automata. In: National Conference on Artificial Intelligence (AAAI 1992), pp. 453–458. AAAI Press, Menlo Park (1992)

    Google Scholar 

  30. Woeginger, G.J.: Exact algorithms for NP-hard problems: A survey. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink! LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beldiceanu, N., Carlsson, M., Petit, T. (2004). Deriving Filtering Algorithms from Constraint Checkers. In: Wallace, M. (eds) Principles and Practice of Constraint Programming – CP 2004. CP 2004. Lecture Notes in Computer Science, vol 3258. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30201-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30201-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23241-4

  • Online ISBN: 978-3-540-30201-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics