Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Application of Support Vector Machine in Bioinformatics: Automated Recognition of Epileptiform Patterns in EEG Using SVM Classifier Designed by a Perturbation Method

  • Conference paper
Advances in Information Systems (ADVIS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3261))

Included in the following conference series:

Abstract

We introduce an approach based on perturbation method for input dimension reduction in Support Vector Machine (SVM) classifiers. If there exists redundant data components in training data set, they can be discarded by analyzing the total disturbance of the SVM output corresponding to the perturbed inputs. Thus, input dimension size is reduced and network becomes smaller. Algorithm for input dimension reduction is first formulated and then applied to real electroencephalography (EEG) data for recognition of epileptiform patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Vapnik, V.: Statistical Learning Theory. John Wiley, NY (1998)

    MATH  Google Scholar 

  2. Vapnik, V.: The support vector method of function estimation. In: Suykens, J.A.K., Vandewalle, J. (eds.) Nonlinear Modelling: Advanced Black-Box Techniques, pp. 55–85. Kluwer Academic Publishers, Boston (1998)

    Google Scholar 

  3. Acır, N., Öztura, İ., Kuntalp, M., Baklan, B., Güzeliş, C.: Automatic spike detection in EEG by a two stage procedure based on ANNs. In: Proceeding of International Conference on Artificial Neural Networks and Neural Information Processing, Istanbul, pp. 445–448 (2003)

    Google Scholar 

  4. Devijver, P.A., Kittler, J.: Pattern Recognition: A Statistical Approach. Prentice-Hall, Englewood Cliffs (1982)

    MATH  Google Scholar 

  5. Steppe, J.M., Bauer Jr, K.W.: Feature Sensitivity Measures. Computers Math. Applic. 23(2), 109–126 (1997)

    Article  MathSciNet  Google Scholar 

  6. Belue, L.M., Bauer Jr, K.W.: Determining input features for multilayer perceptrons. Neurocomputing 7, 111–121 (1995)

    Article  Google Scholar 

  7. Zurada, J.M., Malinowski, A., Usui, S.: Perturbation Method for deleting redundant inputs of perceptron networks. Neurocomputing 14, 177–193 (1997)

    Article  Google Scholar 

  8. Haykin, S.: Neural Networks: A comprehensive foundation. Prentice Hall, New Jersey (1999)

    MATH  Google Scholar 

  9. Bertsekas, D.P.: Nonlinear Programming. Athenas Scientific, Belmont (1995)

    Google Scholar 

  10. Chatrian, E., Bergamini, L., Dondey, M., Klass, D.W., Lennox-Buchthal, M., Petersen, I.: A glossary of terms most commonly used by clinical electroencephalographers. Electroencephalogr. Clin. Neurophysiol. 37, 538–548 (1974)

    Article  Google Scholar 

  11. Kalaycı, T., Özdamar, Ö.: Wavelet preprocessing for automated neural network detection of EEG spikes. IEEE Eng. Med. Biol. 14(2), 160–166 (1995)

    Article  Google Scholar 

  12. McNeil, B.J., Keeler, E., Adelstein, J.: Primer on certain elements of medical decision making. Journal of medicine (The New England) 293(5), 211–215 (1975)

    Article  Google Scholar 

  13. Daubechies, I.: Ten lectures on wavelets. Capital city press, Montpelier (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Acır, N., Güzeliş, C. (2004). An Application of Support Vector Machine in Bioinformatics: Automated Recognition of Epileptiform Patterns in EEG Using SVM Classifier Designed by a Perturbation Method. In: Yakhno, T. (eds) Advances in Information Systems. ADVIS 2004. Lecture Notes in Computer Science, vol 3261. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30198-1_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30198-1_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23478-4

  • Online ISBN: 978-3-540-30198-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics