Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fault-Tolerant Storage in a Dynamic Environment

  • Conference paper
Distributed Computing (DISC 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3274))

Included in the following conference series:

Abstract

We suggest a file storage system for a dynamic environment where servers may join and leave the system. Our construction has a \(O(\sqrt{n})\) write complexity, \(O(\sqrt{n}\log{n})\) read complexity and a constant data blowup-ratio, where n represents the number of processors in the network. Our construction is fault-tolerant against an adversary that can crash θ(n) processors of her choice while having slightly less adaptive queries than the reader.

When both the reader and the adversary are nonadaptive we derive lower bounds on the read complexity, write complexity and data blowup ratio. We show these bounds are tight using a simple storage system construction, based on an ε-intersecting quorum system.

Research supported by a grant from the Israel Science Foundation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abraham, I., Malkhi, D.: Probabilistic quorums for dynamic systems. In: Fich, F.E. (ed.) DISC 2003. LNCS, vol. 2848, pp. 60–74. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Alvisi, L., Malkhi, D., Pierce, E., Reiter, M., Wright, R.: Dynamic Byzantine Quorum Systems. Dependable Systems and Networks(DSN) (2000)

    Google Scholar 

  3. Fiat, A., Saia, J.: Censorship resistant peer-to-peer content addressable networks. In: SODA 2002 (2002)

    Google Scholar 

  4. Kaashoek, F., Karger, D.R.: Koorde, a simple degree optimal hash table. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Katz, J., Trevisan, L.: On the efficiency of local decoding procedures for errorcorrecting codes. In: Proc. STOC 2000 (2000)

    Google Scholar 

  6. Malkhi, D., Naor, M., Ratajczak, D.: Viceroy, a Scalable and dynamic emulation of the buterfly. In: Proc. PODC 2002 (2002)

    Google Scholar 

  7. Malkhi, D., Reiter, M.: Byzantine Quorum Systems. The Journal of Distributed Computing 11(4) (1998)

    Google Scholar 

  8. Malkhi, D., Reiter, M., Wright, R.: Probabilistic quorum systems. In: PODC 1997 (1997)

    Google Scholar 

  9. Malkhi, D., Reiter, M., Wool, A., Wright, R.: Probabilistic Byzantine Quorum Systems. In: Proc. PODC 1998 (1998)

    Google Scholar 

  10. Naor, M., Roth, R.: Optimal File Sharing in Distributed Networks. SIAM J. Comput. (1995)

    Google Scholar 

  11. Naor, M., Wieder, U.: Novel architectures for p2p applications: the continuousdiscrete approach. In: Proc. SPAA 2003 (2003)

    Google Scholar 

  12. Naor, M., Wieder, U.: A Simple fault-tolerant Distributed Hash Table. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Naor, M., Wieder, U.: Scalable and dynamic quorum systems. In: Proc. PODC 2003 (2003)

    Google Scholar 

  14. Naor, M., Wool, A.: The load capacity and availability of quorum systems. SIAM J. on Computing (April 1998)

    Google Scholar 

  15. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content addressable network. In: Proc ACM SIGCOMM 2001 (2001)

    Google Scholar 

  16. Rabin, M.O.: Efficient dispersal of information for security, load balancing, and fault tolerance. J. ACM 36 (1989)

    Google Scholar 

  17. Stoica, R., Morris, D., Karger, M.F., Kaashoek, H.: Balakrishnan, Chord: a scalable peer-to-peer lookup service for internet applications. In: ACM SIGCOMM 2001 (2001)

    Google Scholar 

  18. Zhao, B.Y., Kubiatowicz, Z.: Tapestry: An infrastructure for fault-tolerant widearea location and routing. Technical Report UCB CSD 01-1141 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nadav, U., Naor, M. (2004). Fault-Tolerant Storage in a Dynamic Environment. In: Guerraoui, R. (eds) Distributed Computing. DISC 2004. Lecture Notes in Computer Science, vol 3274. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30186-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30186-8_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23306-0

  • Online ISBN: 978-3-540-30186-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics