Nothing Special   »   [go: up one dir, main page]

Skip to main content

On Dynamic Shortest Paths Problems

  • Conference paper
Algorithms – ESA 2004 (ESA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3221))

Included in the following conference series:

Abstract

We obtain the following results related to dynamic versions of the shortest-paths problem:

(i). Reductions that show that the incremental and decremental single-source shortest-paths problems, for weighted directed or undirected graphs, are, in a strong sense, at least as hard as the static all-pairs shortest-paths problem. We also obtain slightly weaker results for the corresponding unweighted problems.

(ii). A randomized fully-dynamic algorithm for the all-pairs shortest-paths problem in directed unweighted graphs with an amortized update time of \(\tilde{O}(m\sqrt n)\) and a worst case query time is O(n 3/4).

(iii). A deterministic O(n 2log n) time algorithm for constructing a (log n)-spanner with O(n) edges for any weighted undirected graph on n vertices. The algorithm uses a simple algorithm for incrementally maintaining single-source shortest-paths tree up to a given distance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete & Computational Geometry 9, 81–100 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baswana, S., Hariharan, R., Sen, S.: Improved decremental algorithms for transitive closure and all-pairs shortest paths. In: Proc. of 34th STOC, pp. 117–123 (2002)

    Google Scholar 

  3. Baswana, S., Hariharan, R., Sen, S.: Maintaining all-pairs approximate shortest paths under deletion of edges. In: Proc. of 14th SODA, pp. 394–403 (2003)

    Google Scholar 

  4. Baswana, S., Sen, S.: A simple linear time algorithm for computing (2k – 1)- spanner of O(n 1 + 1/k) size for weighted graphs. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 384–396. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Chan, T.: Dynamic subgraph connectivity with geometric applications. In: Proc. of 34th STOC, pp. 7–13 (2002)

    Google Scholar 

  6. Chandra, B., Das, G., Narasimhan, G., Soares, J.: New sparseness results on graph spanners. Internat. J. Comput. Geom. Appl. 5, 125–144 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation 9, 251–280 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Demetrescu, C., Italiano, G.: A new approach to dynamic all pairs shortest paths. In: Proc. of 35th STOC, pp. 159–166 (2003)

    Google Scholar 

  9. Even, S., Shiloach, Y.: An on-line edge-deletion problem. Journal of the ACM 28(1), 1–4 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fredman, M., Tarjan, R.: Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the ACM 34, 596–615 (1987)

    Article  MathSciNet  Google Scholar 

  11. Galil, Z., Margalit, O.: All pairs shortest distances for graphs with small integer length edges. Information and Computation 134, 103–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Fast greedy algorithm for constructing sparse geometric spanners. SIAM J. Comput. 31, 1479–1500 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hagerup, T.: Improved shortest paths on the word RAM. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 61–72. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  14. Henzinger, M., King, V.: Fully dynamic biconnectivity and transitive closure. In: Proc. of 36th FOCS, pp. 664–672 (1995)

    Google Scholar 

  15. Karger, D., Koller, D., Phillips, S.: Finding the hidden path: time bounds for all-pairs shortest paths. SIAM Journal on Computing 22, 1199–1217 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Peleg, D., Schäffer, A.: Graph spanners. J. Graph Theory 13, 99–116 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Pettie, S.: A new approach to all-pairs shortest paths on real-weighted graphs. Theoretical Computer Science 312(1), 47–74 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pettie, S., Ramachandran, V.: Computing shortest paths with comparisons and additions. In: Proc. of 13th SODA, pp. 267–276 (2002)

    Google Scholar 

  19. Ramalingam, G., Reps, T.: An incremental algorithm for a generalization of the shortest-path problem. Journal of Algorithms 21(2), 267–305 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Roditty, L., Zwick, U.: Improved dynamic reachability algorithms for directed graphs. In: Proc. of 43rd FOCS, pp. 679–688 (2002)

    Google Scholar 

  21. Roditty, L., Zwick, U.: A fully dynamic reachability algorithm for directed graphs with an almost linear update time. In: Proc. of 36th STOC, pp. 184–191 (2004)

    Google Scholar 

  22. Roditty, L., Zwick, U.: Dynamic approximate all-pairs shortest paths in undirected graphs. In: Proc. of 45th FOCS (2004) (to appear)

    Google Scholar 

  23. Seidel, R.: On the all-pairs-shortest-path problem in unweighted undirected graphs. J. Comput. Syst. Sci. 51, 400–403 (1995)

    Article  MathSciNet  Google Scholar 

  24. Shoshan, A., Zwick, U.: All pairs shortest paths in undirected graphs with integer weights. In: Proc. of 40th FOCS, pp. 605–614 (1999)

    Google Scholar 

  25. Thorup, M.: Undirected single-source shortest paths with positive integer weights in linear time. Journal of the ACM 46, 362–394 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. Thorup, M.: Fully-dynamic all-pairs shortest paths: Faster and allowing negative cycles. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 384–396. Springer, Heidelberg (2004) (to appear)

    Chapter  Google Scholar 

  27. Thorup, M., Zwick, U.: Approximate distance oracles. In: Proc. of 33rd STOC, pp. 183–192 (2001); Full version to appear in the Journal of the ACM

    Google Scholar 

  28. Ullman, J., Yannakakis, M.: High-probability parallel transitive-closure algorithms. SIAM Journal on Computing 20, 100–125 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  29. Yuster, R., Zwick, U.: Fast sparse matrix multiplication. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 604–615. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roditty, L., Zwick, U. (2004). On Dynamic Shortest Paths Problems. In: Albers, S., Radzik, T. (eds) Algorithms – ESA 2004. ESA 2004. Lecture Notes in Computer Science, vol 3221. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30140-0_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30140-0_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23025-0

  • Online ISBN: 978-3-540-30140-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics