Nothing Special   »   [go: up one dir, main page]

Skip to main content

Classification of Fuzzy Data in Database Management System

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3214))

  • 575 Accesses

Abstract

When the available information is imperfect, it is often desirable to represent it in the database, so that it can be used to answer queries of interest as much as possible. The data as well as query in data sources are often vague or imprecise (fuzzy). In this paper, a comprehensive classification of fuzzy data is done. This classification will be used as framework for understanding how fuzzy data arise and manifest themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Altrock, C.: Fuzzy Logic and NeuroFuzzy Applications Explained. Prentice Hall PTR, Englewood Cliffs (1995)

    Google Scholar 

  2. Buckles, B.P.: An information retrieval perspective on fuzzy database systems. In: Proceedings of the ACM 1982 conference, pp. 186–187 (1982) ISBN:0-89791-085-0

    Google Scholar 

  3. Elmasri, R., Navathe, S.: Fundamentals of Database Systems. 3rd edn. Addison Wesley, Reading (2000) ISBN 9814053309

    Google Scholar 

  4. Kwan, S., Olken, F., Rotem, D.: Uncertain, Incomplete and Inconsistent Data in Scinetific and Statistical Databases. Uncertainty Management in Information Systems, 127–154 (1996)

    Google Scholar 

  5. Mendel, J.M.: Fuzzy logic systems for engineering: a tutorial. Proceedings of the IEEE 83(3), 345–377 (1995)

    Article  Google Scholar 

  6. Parsons, S.: Current approaches to handling imperfect information in data and knowledge bases. Knowledge and Data Engineering IEEE 8(3), 353–372 (1996)

    Article  MathSciNet  Google Scholar 

  7. Schenker, A., Last, M., Kandel, A.: Fuzzification of an Object-Oriented Database System. International Journal of Fuzzy Systems 3(2) (2001)

    Google Scholar 

  8. Shenoi, S.: Multilevel Database Security Using Information Clouding. Second IEEE international conference on Fuzzy Systems 1, 483–488 (1993)

    Article  Google Scholar 

  9. Smets, P., Motro, A.: Uncertainty Management in Information Systems From Needs to Solutions. Kluwer Academic Publishers, Dordrecht (1997)

    Google Scholar 

  10. Zaniolo, C.: Database Relations with Null Values. Symposium on Principles of Database Systems 28(1) (1984)

    Google Scholar 

  11. Zhang, W., Wang, K.: An efficient evaluation of a fuzzy equi-join using fuzzy equality indicators. Knowledge and Data Engineering, IEEE Transactions on 12(2), 225–237 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Popat, D., Sharda, H., Taniar, D. (2004). Classification of Fuzzy Data in Database Management System. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2004. Lecture Notes in Computer Science(), vol 3214. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30133-2_91

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30133-2_91

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23206-3

  • Online ISBN: 978-3-540-30133-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics