Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Mean Estimation of Fuzzy Numbers by Evaluation Measures

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3214))

Abstract

This paper discusses an evaluation method of fuzzy numbers as mean values defined by fuzzy measures, and the method is applicable to fuzzy numbers and fuzzy stochastic process defined by fuzzy numbers/fuzzy random variables in decision making. Numerical examples are given to illustrate our idea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Campos, L., Munoz, A.: A subjective approach for ranking fuzzy numbers. Fuzzy Sets and Systems 29, 145–153 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  2. Carlsson, C., Fullér, R.: On possibilistic mean value and variance of fuzzy numbers. Fuzzy Sets and Systems 122, 315–326 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Fortemps, P., Roubens, M.: Ranking and defuzzification methods based on area compensation. Fuzzy Sets and Systems 82, 319–330 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Goetshel, R., Voxman, W.: Elementary fuzzy calculus. Fuzzy Sets and Systems 18, 31–43 (1986)

    Article  MathSciNet  Google Scholar 

  5. López-Díaz, M., Gil, M.A.: The λ-average value and the fuzzy expectation of a fuzzy random variable. Fuzzy Sets and Systems 99, 347–352 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Wang, X., Kerre, E.E.: Reasonable properties for the ordering of fuzzy quantities (I). Fuzzy Sets and Systems 118, 375–385 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Wang, Z., Klir, G.J.: Fuzzy Measure Theory. Plenum Press, New York (1993)

    Google Scholar 

  8. Yager, R.R.: A procedure for ordering fuzzy subsets of the unit interval. Inform. Sciences 24, 143–161 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  9. Zadeh, L.A.: Fuzzy sets. Inform. and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yoshida, Y. (2004). A Mean Estimation of Fuzzy Numbers by Evaluation Measures. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2004. Lecture Notes in Computer Science(), vol 3214. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30133-2_163

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30133-2_163

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23206-3

  • Online ISBN: 978-3-540-30133-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics