Nothing Special   »   [go: up one dir, main page]

Skip to main content

Feature Extraction by Linear Spectral Unmixing

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2004)

Abstract

Linear Spectral Unmixing (LSU) has been proposed for the analysis of hyperspectral images, to compute the fractional contribution of the detected endmembers to each pixel in the image. In this paper we propose that the fractional abundance coefficients to be used as features for the supervised classification of the pixels. Thus we compare them with two well-known linear feature extraction algorithms: Principal Component Analysis (PCA) and Independent Component Analysis (ICA). A specific problem of LSU is the determination of the endmembers, to this end we employ two approaches, the Convex Cone Analysis and another one based on the detection of morphological independence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fukunaga, K.: Introduction to statistical pattern recognition. Academic Press, Boston, MA (1990)

    MATH  Google Scholar 

  2. Graña, M., Gallego, J.: Associative Mophological Memories for endmember induction. In: Proc. IGARSS 2003, Tolouse, France (2003)

    Google Scholar 

  3. Graña, M., Gallego, J., Hernandez, C.: Further results on AMM for endmember induction. In: IEEE 2003 Workshop on Advances in Techniques for Analysis of Remotely Sensed Data (2003)

    Google Scholar 

  4. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sciences 79, 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  5. Hyvarynën, A., Oja, E.: A fast fixed-point algorithm for independent component analysis. Neural Comp. 9, 1483–1492 (1999)

    Article  Google Scholar 

  6. Hyvarynën, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley & Sons, New York (2001)

    Book  Google Scholar 

  7. Ifarraguerri, A., Chang, C.-I.: Multispectral and Hyperspectral Image Analysis with Convex Cones. IEEE Trans. Geos. Rem. Sensing 37(2), 756–770 (1999)

    Article  Google Scholar 

  8. Keshava, N., Mustard, J.F.: Spectral unimixing. IEEE Signal Proc. Mag. 19(1), 44–57 (2002)

    Article  Google Scholar 

  9. Ritter, G.X., Diaz-de-Leon, J.L., Sussner, P.: Morphological bidirectional associative memories. Neural Networks 12, 851–867 (1999)

    Article  Google Scholar 

  10. Ritter, G.X., Sussner, P., Diaz-de-Leon, J.L.: Morphological associative memories. IEEE Trans. on Neural Networks 9(2), 281–292 (1998)

    Article  Google Scholar 

  11. Ritter, G.X., Urcid, G., Iancu, L.: Reconstruction of patterns from moisy inputs using morphological associative memories. J. Math. Imaging and Vision 19(2), 95–112 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Sussner, P.: Observations on Morphological Associative Memories and the Kernel Method. In: Proc. IJCNN 2001, Washington DC (July 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Graña, M., D’Anjou, A. (2004). Feature Extraction by Linear Spectral Unmixing. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2004. Lecture Notes in Computer Science(), vol 3213. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30132-5_95

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30132-5_95

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23318-3

  • Online ISBN: 978-3-540-30132-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics