Abstract
The use of image processing techniques and Computer Aided Diagnosis (CAD) systems has proved to be effective for the improvement of radiologists’ diagnosis, especially in the case of lung nodules detection. In this paper we describe a method for processing Postero Anterior chest radiographs which extracts a set of nodule candidate regions characterized by low cardinality and high sensitivity ratio.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
van Ginneken, B.: Computer-Aided Diagnosis, A.: in Chest Radiographs. P.h.D. dissertation, Utrecht Univ., Utrecht, The Nederlands (2001)
Kapur,Sahoo,Woong, A.: A new method for gray level picture thresholding using the entropy of the histogram. Comp. Vis. Grap. and Im. Proc. 29, 273–285 (1985)
Keserci, Bilgin Yoshida, Hiroyuki, A.: Computerized detection of pulmonary nodules in chest radiographs based on morphological features and wavelet snake model. Med. Image Analisys, 6 431–447 (2002)
Schilham, A., Van Ginneken, B., Loog, M.: Multi-scale nodule detection in chest radiographs. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 602–609. Springer, Heidelberg (2003)
Web address: http://www.macnet.or.jp/jsrt2/cdrom_nodules.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Campadelli, P., Casiraghi, E. (2004). Nodule Detection in Postero Anterior Chest Radiographs. In: Barillot, C., Haynor, D.R., Hellier, P. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2004. MICCAI 2004. Lecture Notes in Computer Science, vol 3217. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30136-3_132
Download citation
DOI: https://doi.org/10.1007/978-3-540-30136-3_132
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22977-3
Online ISBN: 978-3-540-30136-3
eBook Packages: Springer Book Archive