Nothing Special   »   [go: up one dir, main page]

Skip to main content

Grading Textured Surfaces with Automated Soft Clustering in a Supervised SOM

  • Conference paper
Image Analysis and Recognition (ICIAR 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3212))

Included in the following conference series:

Abstract

We present a method for automated grading of texture samples which grades the sample based on a sequential scan of overlapping blocks, whose texture is classified using a soft partitioned SOM, where the soft clusters have been automatically generated using a labelled training set. The method was devised as an alternative to manual selection of hard clusters in a SOM for machine vision inspection of tuna meat. We take advantage of the sequential scan of the sample to perform a sub-optimal search in the SOM for the classification of the blocks, which allows real time implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kohonen, T.: Self-organizing Maps. Springer, Berlin (1997)

    MATH  Google Scholar 

  2. Niskanen, M., Kauppinen, H., Silven, O.: Real-time Aspects of SOM-based Visual Surface Inspection. In: Proceedings of SPIE, vol. 4664, pp. 123–134 (2002)

    Google Scholar 

  3. Niskanen, M., Silvén, O., Kauppinen, H.: Experiments with SOM Based Inspection of Wood. In: International Conference on Quality Control by Artificial Vision (QCAV 2001), vol. 2, pp. 311–316 (2001)

    Google Scholar 

  4. Kauppinen, H., Silvén, O., Piirainen, T.: Self-organizing map based user interface for visual surface inspection. In: 11th Scandinavian Conference on Image Analysis (SCIA 1999), pp. 801–808 (1999)

    Google Scholar 

  5. Martín-Herrero, J., Ferreiro-Armán, M., Alba-Castro, J.L.: A SOFM Improves a Real Time Quality Assurance Machine Vision System. In: Accepted for International Conference on Pattern Recognition, ICPR 2004 (2004)

    Google Scholar 

  6. Cheung, E.S.H., Constantinides, A.G.: Fast Nearest Neighbour Algorithms for self- Organising Map and Vector Quantisation. In: 27th Asilomar Conference on Signals, Systems and Computers, vol. 2, pp. 946–950 (1993)

    Google Scholar 

  7. Kaski, S.: Fast Winner Search for SOM-Based Monitoring and Retrieval of High- Dimensional Data. In: 9th Conference on Artificial Neural Networks, vol. 2, pp. 940–945 (1999)

    Google Scholar 

  8. Kushilevitz, E., Ostrovsky, R., Rabani, Y.: Efficient Search for Approximate Nearest Neighbor in High Dimensional Spaces. In: 30th ACM Symposium on Theory of Computing, pp. 614–623 (1998)

    Google Scholar 

  9. Ojala, T., Pietikäinen, M., Harwood, D.: Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In: Proc. 12th International Conference on Pattern Recognition, vol. I, pp. 582–585 (1994)

    Google Scholar 

  10. Bauer, H.-U., Herrmann, M., Villmann, T.: Neural maps and topographic vector quantization. Neural Networks 12(4-5), 659–676 (1999)

    Article  Google Scholar 

  11. Martín-Herrero, J., Alba-Castro, J.L.: High speed machine vision: The canned tuna case. In: Billingsley, J. (ed.) Mechatronics and Machine Vision in Practice: Future Trends, Research Studies Press, London (2003)

    Google Scholar 

  12. Mäenpää, T., Ojala, T., Pietikäinen, M., Soriano, M.: Robust texture classification by subsets of Local Binary Patterns. In: Proceedings of the 15th International Conference on Pattern Recognition (2000)

    Google Scholar 

  13. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley, New York (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martín-Herrero, J., Ferreiro-Armán, M., Alba-Castro, J.L. (2004). Grading Textured Surfaces with Automated Soft Clustering in a Supervised SOM. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2004. Lecture Notes in Computer Science, vol 3212. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30126-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30126-4_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23240-7

  • Online ISBN: 978-3-540-30126-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics