Nothing Special   »   [go: up one dir, main page]

Skip to main content

Comparative Frameworks for Directional Primitive Extraction

  • Conference paper
Image Analysis and Recognition (ICIAR 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3211))

Included in the following conference series:

  • 484 Accesses

Abstract

This paper introduces two alternative computational frameworks for the extraction of the directional primitives present in an image. Both frameworks are divided into three stages: low level primitive extraction, organisation of low level primitives by means of dynamical neural networks (growing cell structures) and segment extraction through a pseudo-colour Hough transform. The alternative frameworks are compared and their relative advantages and disadvantages are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Carreira, M.J., Mirmehdi, M., Thomas, B.T., Penas, M.: Perceptual primitives from an extended 4D Hough transform. Image and Vision Computing 20(13-14), 969–980 (2002)

    Article  Google Scholar 

  2. Van Deemter, J., Du Buf, J.: Simultaneous detection of lines and edges using compound Gabor filters. Journal of Pattern Recognition and Artificial Intelligence 14(4), 757–777 (2000)

    Article  Google Scholar 

  3. Fritzke, B.: Growing cell structures - a self-organizing network for unsupervised and supervised learning. Neural Networks 7(9), 1441–1460 (1994)

    Article  Google Scholar 

  4. Gabor, B.: Theory of communication. Journal of the Institute of Electronic Engineers 36(93), 429–457 (1946)

    Google Scholar 

  5. Lowe, D.G.: Perceptual Organization and Visual Recognition. Kluwer Academic Publishers, Dordrecht (1985)

    Google Scholar 

  6. Penas, M., Carreira, M.J., Penedo, M.G.: Auto-organised structures for extraction of perceptual primitives. In: Mira, J., Prieto, A.G. (eds.) IWANN 2001. LNCS, vol. 2085, pp. 628–636. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Penas, M., Carreira, M.J., Penedo, M.G.: Perceptual organization of directional primitives using a pseudo-color Hough transform. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 893–898. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Wyszecki, G., Stiles, W.S.: Color science, concept and methods, quantitative data and formulae. John Wiley & sons, Chichester (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Penas, M., Carreira, M.J., Penedo, M.G., Mirmehdi, M., Thomas, B.T. (2004). Comparative Frameworks for Directional Primitive Extraction. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2004. Lecture Notes in Computer Science, vol 3211. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30125-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30125-7_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23223-0

  • Online ISBN: 978-3-540-30125-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics