Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Frequency-Domain Normalized Multichannel Blind Deconvolution Algorithm for Acoustical Signals

  • Conference paper
  • First Online:
Independent Component Analysis and Blind Signal Separation (ICA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3195))

Abstract

In this paper, a new frequency-domain normalized MBD algorithm is presented for separating convolutive mixtures of acoustical sources. The proposed algorithm uses unidirectional unmixing filters to avoid backward filtering in gradient terms. The gradient terms are then normalized in the frequency domain. As a result, separation and convergence performances are improved, while whitening effect is relieved greatly. Simulation results with real world recordings demonstrate superior performances of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amari, S.I., Douglas, S.C., Cichocki, A., Yang, H.H.: Novel on-line adaptive learning algorithms for blind deconvolution using the natural gradient approach. In: Proc. IEEE 11th IFAC Symposium on System Identification, SYSID 1997, Kitakyushu, Japan, pp. 1057–1062 (1997)

    Google Scholar 

  2. Lee, T.W., Bell, A., Orglmeister, R.: Blind source separation of real world signals. In: Proc. IEEE Int. Conf. Neural Networks, Houston, June 1997, pp. 2129–2135 (1997)

    Google Scholar 

  3. Amari, S.I., Chen, T.P., Cichocki, A.: Nonholonomic orthogonal learning algorithms for blind source separation. Neural Computation 12, 1463–1484 (2000)

    Article  Google Scholar 

  4. Sun, X., Douglas, S.: A natural gradient convolutive blind source separation algorithm for speech mixtures. In: Proc. Int. Workshop on Independent Component Analysis and Signal Separation (ICA 2001), San Diego, California, pp. 59–64 (2001)

    Google Scholar 

  5. Ferrara, E.R.: Fast implmentation of LMS adaptive filters. IEEE Trans. on Acoustics Speech and Signal Processing ASSP–28, 474–475 (1980)

    Article  Google Scholar 

  6. Haykin, S.: Adaptive Filter Theory, 4th edn. Prentice-Hall, Englewood Cliffs (2002)

    MATH  Google Scholar 

  7. Na, K., Kang, S., K.L., Chae, S.: Frequency-domain implementation of block adaptive filters for ica-based multichannel blind deconvolution. In: Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, ICASSP 1999 (1999)

    Google Scholar 

  8. Joho, M., Schniter, P.: Frequency domain realization of a multichannel blind deconvolution algorithm based on the natural gradient. In: Proc. Int. Workshop on Independent Component Analysis and Signal Separation, ICA 2003 (2003)

    Google Scholar 

  9. Douglas, S., Amari, A.C., Quasi-newton, S.: filtered-regressor algorithms for adaptive equalization and deconvolution. In: Proc. IEEEWorkshop on Signal Processing Advances in Wireless Communications, Paris, France, pp. 109–112 (1997)

    Google Scholar 

  10. Zhang, L., Cichocki, A., Amari, S.: Geometrical structures of FIR manifold and their application to multichannel blind deconvoluution. In: Proc. IEEE Workshop on Neural Networks for Signal Processing (NNSP 1999), Madison, Wisconsin, pp. 303–312 (1999)

    Google Scholar 

  11. Cichocki, A., Amari, S.I.: Adaptive Blind Signal and Image Processing: Learning algorithms and applications. Wiley, Chichester (2002)

    Book  Google Scholar 

  12. Fancourt, C., Parra, L.: Coherence function as a criterion for blind source separation. In: IEEE International Workshop on Neural Networks and Signal Processing 2001, pp. 303–312 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nam, S.H., Beack, S. (2004). A Frequency-Domain Normalized Multichannel Blind Deconvolution Algorithm for Acoustical Signals. In: Puntonet, C.G., Prieto, A. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2004. Lecture Notes in Computer Science, vol 3195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30110-3_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30110-3_67

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23056-4

  • Online ISBN: 978-3-540-30110-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics