Nothing Special   »   [go: up one dir, main page]

Skip to main content

Linear Multilayer Independent Component Analysis Using Stochastic Gradient Algorithm

  • Conference paper
  • First Online:
Independent Component Analysis and Blind Signal Separation (ICA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3195))

Abstract

In this paper, the linear (feed-forward) multilayer ICA algorithm is proposed for the blind separation of high-dimensional mixed signals. There are two main phases in each layer. One is the mapping phase, where a one-dimensional mapping is formed by stochastic gradient algorithm which makes the higher-correlated signals be nearer incrementally. Another is the local-ICA phase, where each neighbor pair of signals in the mapping is separated by MaxKurt algorithm. By repetition of these two phase, this algorithm can reduce an ICA criterion monotonically. Some numerical experiments show that this algorithm is quite efficient in natural image processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jutten, C., Herault, J.: Blind separation of sources (part I): An adaptive algorithm based on neuromimetic architecture. Signal Processing 24, 1–10 (1991)

    Article  Google Scholar 

  2. Comon, P.: Independent component analysis - a new concept? Signal Processing 36, 287–314 (1994)

    Article  Google Scholar 

  3. Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural Computation 7, 1129–1159 (1995)

    Article  Google Scholar 

  4. Cardoso, J.F., Laheld, B.: Equivariant adaptive source separation. IEEE Transactions on Signal Processing 44, 3017–3030 (1996)

    Article  Google Scholar 

  5. Hyvärinen, A., Oja, E.: A fast fixed-point algorithm for independent component analysis. Neural Computation 9, 1483–1492 (1997)

    Article  Google Scholar 

  6. Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 10, 626–634 (1999)

    Article  Google Scholar 

  7. Cardoso, J.F., Souloumiac, A.: Blind beamforming for non Gaussian signals. IEE Proceedings-F 140, 362–370 (1993)

    Google Scholar 

  8. Cardoso, J.F.: High-order contrasts for independent component analysis. Neural Computation 11, 157–192 (1999)

    Article  Google Scholar 

  9. Matsuda, Y., Yamaguchi, K.: Global mapping analysis: stochastic approximation for multidimensional scaling. International Journal of Neural Systems 11, 419–426 (2001)

    Article  Google Scholar 

  10. Matsuda, Y., Yamaguchi, K.: Computer simulation of the formation of global topographic mapping in the visual system. Transactions of Information Processing Society of Japan 40, 1091–1105 (1999) (in Japanese)

    Google Scholar 

  11. Bell, A.J., Sejnowski, T.J.: The ”independent components” of natural scenes are edge filters. Vision Research 37, 3327–3338 (1997)

    Article  Google Scholar 

  12. van Hateren, J.H., van der Schaaf, A.: Independent component filters of natural images compared with simple cells in primary visual cortex. Proceedings of the Royal Society of London: B 265, 359–366 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Matsuda, Y., Yamaguchi, K. (2004). Linear Multilayer Independent Component Analysis Using Stochastic Gradient Algorithm. In: Puntonet, C.G., Prieto, A. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2004. Lecture Notes in Computer Science, vol 3195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30110-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30110-3_39

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23056-4

  • Online ISBN: 978-3-540-30110-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics