Abstract
This paper focuses on inductive learning of recursive logical theories from a set of examples. This is a complex task where the learning of one predicate definition should be interleaved with the learning of the other ones in order to discover predicate dependencies. To overcome this problem we propose a variant of the separate-and-conquer strategy based on parallel learning of different predicate definitions. In order to improve its efficiency, optimization techniques are investigated and adopted solutions are described. In particular, two caching strategies have been implemented and tested on document processing datasets. Experimental results are discussed and conclusions are drawn.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Apt, K.R.: Logic programming. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 493–574. Elsevier, Amsterdam (1990)
Blockeel, H., Demoen, B., Jansseens, G., Van de casteele, H., Van Laer, W.: Two Advanced Transformations for Improving the Efficiency of an ILP System. In: Cussens, J., Frisch, A. (eds.) Proceedings of the Work-in-Progress Track at the 10th International Conference on Inductive Logic Programming, pp. 43–59 (2000)
Blockeel, H., De Raedt, L., Jacobs, N., Demoen, B.: Scaling up inductive logic programming by learning from interpretations. Data Mining and Knowledge Discovery 3(1), 59–93 (1999)
Boström, H.: Induction of Recursive Transfer Rules. In: Cussens, J. (ed.) Proceedings of the Language Logic and Learning Workshop, pp. 52–62 (1999)
Buntine, W.: Generalised subsumption and its applications to induction and redundancy. Artificial Intelligence 36, 149–176 (1988)
Costa, V.S., Srinivasan, A., Camacho, R.: A note on two simple trasformations for improving the efficiency of an ILP system. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, p. 225. Springer, Heidelberg (2000)
Cussens, J.: Part-of-speech tagging using Progol. In: Džeroski, S., Lavrač, N. (eds.) ILP 1997. LNCS(LNAI), vol. 1297, Springer, Heidelberg (1997)
De Raedt, L., Dehaspe, L.: Clausal discovery. Machine Learning Journal 26(2/3), 99–146 (1997)
De Raedt, L., Lavrac, N.: Multiple predicate learning in two Inductive Logic Programming settings. Journal on Pure and Applied Logic 4(2), 227–254 (1996)
Khardon, R.: Learning to take Actions. Machine Learning 35(1), 57–90 (1999)
Malerba, D., Esposito, F., Lisi, F.A., Altamura, O.: Automated Discovery of Dependencies Between Logical Components in Document Image Understanding. In: Proceedings of the 6th International Conference on Document Analysis and Recognition, Seattle,WA, pp. 174–178 (2001)
Malerba, D.: Learning Recursive Theories in the Normal ILP Setting, Fundamenta Informaticae, vol. 57(1), pp. 39–77 (2003)
Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
Muggleton, S., Bryant, C.H.: Theory completion using inverse entailment. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 130–146. Springer, Heidelberg (2000)
Nedellec, C., Ad, H., Bergadano, F., Tausend, B.: Declarative bias in ILP. In: De Raedt, L. (ed.) Advances in Inductive Logic Programming, Frontiers in Artificial Intelligence and Applications, vol. 32, pp. 82–103. IOS Press, Amsterdam (1996)
Nienhuys-Cheng, S.-W., de Wolf, R.: The Subsumption theorem in inductive logic programming: Facts and fallacies. In: De Raedt, L. (ed.) Advances in Inductive Logic Programming, pp. 265–276. IOS Press, Amsterdam (1996)
Plotkin, G.D.: A note on inductive generalization. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence 5, pp. 153–163. Edinburgh University Press, Edinburgh (1970)
Plotkin, G.D.: A further note on inductive generalization. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence 6, pp. 101–124. Edinburgh University Press, Edinburgh (1971)
Struyf, J., Blockeel, H.: Query optimisation in Inductive Logic Programming by Reordering Literals. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 329–346. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Berardi, M., Varlaro, A., Malerba, D. (2004). On the Effect of Caching in Recursive Theory Learning. In: Camacho, R., King, R., Srinivasan, A. (eds) Inductive Logic Programming. ILP 2004. Lecture Notes in Computer Science(), vol 3194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30109-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-30109-7_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22941-4
Online ISBN: 978-3-540-30109-7
eBook Packages: Springer Book Archive