Nothing Special   »   [go: up one dir, main page]

Skip to main content

Efficient Data Structures for Inductive Logic Programming

  • Conference paper
Inductive Logic Programming (ILP 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2835))

Included in the following conference series:

Abstract

This work aims at improving the scalability of memory usage in Inductive Logic Programming systems. In this context, we propose two efficient data structures: the Trie, used to represent lists and clauses; and the RL-Tree, a novel data structure used to represent the clauses coverage. We evaluate their performance in the April system using well known datasets. Initial results show a substantial reduction in memory usage without incurring extra execution time overheads. Our proposal is applicable in any ILP system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Muggleton, S.: Inductive logic programming. In: Proceedings of the 1st Conference on Algorithmic Learning Theory, Ohmsma, Tokyo, Japan, pp. 43–62 (1990)

    Google Scholar 

  2. Muggleton, S.: Inductive logic programming. New Generation Computing 8(4), 295–317 (1991)

    Article  MATH  Google Scholar 

  3. Ilp applications, http://www.cs.bris.ac.uk/~ILPnet2/Applications/

  4. Nédellec, C., Rouveirol, C., Adé, H., Bergadano, F., Tausend, B.: Declarative bias in ILP. In: De Raedt, L. (ed.) Advances in Inductive Logic Programming, pp. 82–103. IOS Press, Amsterdam (1996)

    Google Scholar 

  5. Camacho, R.: Improving the efficiency of ilp systems using an incremental language level search. In: Annual Machine Learning Conference of Belgium and the Netherlands (2002)

    Google Scholar 

  6. Blockeel, H., Dehaspe, L., Demoen, B., Janssens, G., Ramon, J., Vandecasteele, H.: Improving the efficiency of Inductive Logic Programming through the use of query packs. Journal of Artificial Intelligence Research 16, 135–166 (2002)

    MATH  Google Scholar 

  7. Costa, V.S., Srinivasan, A., Camacho, R.: A note on two simple transformations for improving the efficiency of an ILP system. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, p. 225. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Costa, V.S., Srinivasan, A., Camacho, R., Hendrik, Van Laer, W.: Query transformations for improving the efficiency of ilp systems. Journal of Machine Learning Research (2002)

    Google Scholar 

  9. Camacho, R.: Inductive Logic Programming to Induce Controllers. PhD thesis, Univerity of Porto (2000)

    Google Scholar 

  10. Page, D.: ILP: Just do it. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 3–18. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Matsui, T., Inuzuka, N., Seki, H., Itoh, H.: Comparison of three parallel implementations of an induction algorithm. In: 8th Int. Parallel Computing Workshop, Singapore, pp. 181–188 (1998)

    Google Scholar 

  12. Ohwada, H., Mizoguchi, F.: Parallel execution for speeding up inductive logic programming systems. In: Arikawa, S., Furukawa, K. (eds.) DS 1999. LNCS (LNAI), vol. 1721, pp. 277–286. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  13. Ohwada, H., Nishiyama, H., Mizoguchi, F.: Concurrent execution of optimal hypothesis search for inverse entailment. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 165–173. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  14. Wang, Y., Skillicorn, D.: Parallel inductive logic for data mining. In: Workshop on Distributed and Parallel Knowledge Discovery, KDD 2000, Boston, ACM Press, New York (2000)

    Google Scholar 

  15. Dehaspe, L., De Raedt, L.: Parallel inductive logic programming. In: Proceedings of the MLnet Familiarization Workshop on Statistics, Machine Learning and Knowledge Discovery in Databases (1995)

    Google Scholar 

  16. Aleph, http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/

  17. Fonseca, N., Camacho, R., Silva, F., Costa, V.S.: Induction with April: A preliminary report. Technical Report DCC-2003-02, DCC-FC, Universidade do Porto (2003)

    Google Scholar 

  18. Fredkin, E.: Trie Memory. Communications of the ACM 3, 490–499 (1962)

    Article  Google Scholar 

  19. Ramakrishnan, I.V., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient Access Mechanisms for Tabled Logic Programs. Journal of Logic Programming 38(1), 31–54 (1999)

    Article  MATH  Google Scholar 

  20. Bachmair, L., Chen, T., Ramakrishnan, I.V.: Associative-Commutative Discrimination Nets. In: Gaudel, M.-C., Jouannaud, J.-P. (eds.) CAAP 1993, FASE 1993, and TAPSOFT 1993. LNCS, vol. 668, pp. 61–74. Springer, Heidelberg (1993)

    Google Scholar 

  21. Graf, P. (ed.): Term Indexing. LNCS (LNAI), vol. 1053. Springer, Heidelberg (1996)

    Google Scholar 

  22. McCune, W.W.: Experiments with Discrimination-Tree Indexing and Path Indexing for Term Retrieval. Journal of Automated Reasoning 9(2), 147–167 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ohlbach, H.J.: Abstraction Tree Indexing for Terms. In: Proceedings of the 9th European Conference on Artificial Intelligence, Stockholm, Sweden, pp. 479–484. Pitman Publishing (1990)

    Google Scholar 

  24. Samet, H.: The quadtree and related hierarchical data structures. ACM Computing Surveys (CSUR) 16(2), 187–260 (1984)

    Article  MathSciNet  Google Scholar 

  25. Richards, B.L., Mooney, R.J.: Automated refinement of first-order horn-clause domain theories. Machine Learning 19(2), 95–131 (1995)

    Google Scholar 

  26. Cussens, J.: Part-of-speech disambiguation using ilp. Technical Report PRGTR- 25-96, Oxford University Computing Laboratory (1996)

    Google Scholar 

  27. Samet, H.: Data structures for quadtree approximation and compression. Communications of the ACM 28(9), 973–993 (1985)

    Article  Google Scholar 

  28. Costa, V.S., Damas, L., Reis, R., Azevedo, R.: YAP Prolog User’s Manual. Universidade do Porto (1989)

    Google Scholar 

  29. Muggleton, S., Feng, C.: Efficient induction in logic programs. In: Muggleton, S. (ed.) Inductive Logic Programming, pp. 281–298. Academic Press, London (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fonseca, N., Rocha, R., Camacho, R., Silva, F. (2003). Efficient Data Structures for Inductive Logic Programming. In: Horváth, T., Yamamoto, A. (eds) Inductive Logic Programming. ILP 2003. Lecture Notes in Computer Science(), vol 2835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39917-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39917-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20144-1

  • Online ISBN: 978-3-540-39917-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics