Abstract
In this paper, we propose an approach to accurately modelling tubular, anatomical structures as curvilinear entities. Current optimal path and centerline extraction techniques are either prone to introducing spurious tortuosity, or unable to consistently avoid taking shortcuts at high curvature positions. These problems not only affect spatial appreciation of the structure but may also significantly impact the accuracy of length, angle and tortuosity measurements. Our approach overcomes the above deficiencies through the combination of a front propagation method and a model in which a priori shape knowledge is embedded. This approach is designed to be used in endovascular and neurological surgical planning. The efficacy of our method is demonstrated using synthetic and clinical data.
Chapter PDF
Similar content being viewed by others
References
Aylward, S., Bullitt, E.: Initialization, Noise, Singularities and Scale in Height Ridge Traversal for Tubular Object Centerline Extraction. IEEE TMI 21(2), 61–75 (2002)
Blum, H.: A transformation for extracting new descriptors of shape. In: Wathen, D. (ed.) Models for the Perception of Speech and Visual Form, pp. 363–380. MIT Press, Cambridge (1967)
Borgefors, G.: Distance transformations in arbitrary dimensions. Comput. Vision Graphics Image Process 27, 321–345 (1984)
Chalana, V., Costa, W., Kim, Y.: Integrating region growing and edge detection using regularization. In: SPIE, vol. 2434, pp. 262–271 (1995)
Cohen, L., Cohen, I.: Finite-Element Methods for Active Contour Models and Balloons for 2-D and 3-D Images. IEEE PAMI 15(11), 1131–1147 (1993)
Deschamps, T., Cohen, L.D.: Fast extraction of minimal path in 3D images and applications to virtual endoscopy. Medical Image Analysis 5, 281–299 (2001)
Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)
Frangi, A.F., Niessen, W.J., Vinken, K., Viergever, M.A.: Multi-scale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)
Krissian, K., Malandain, G., Ayache, N., Vaillant, R., Trousset, Y.: Model-Based Detection of Tubular Structures in 3D Images. CVIU 80, 130–171 (2000)
Li, R., Brown, S., Wilson, L., Young, J., Luo, S.: Progressively Refined Patient- Specific Vessel System Models from Generic Representations. In: DICTA 2002, Melbourne, Australia, October 2001, pp. 184–189 (2001)
Lohmann, G.: Volumetric Image Analysis. Wiley, Chichester (1998)
Nikolaidis, N., Pitas, I.: 3-D Image Processing Algorithms. John Wiley, Chichester (2001)
Pizer, S.M., Thall, A.L., Chen, D.T.: M-reps: A New Object Representation for Graphics. Technical Report TR99-030, Uni. N. Carolina, Chapel Hill (September 1999)
Sato, Y., Nakajima, S., Shiraga, N., Atsumi, H., Yoshida, S., Koller, T., Gerig, G., Kikinis, R.: Three-Dimensional Multi-Scale Line Filter for Segmentation and Visualization of Curvilinear Structures in Medical Images. Medical Image Analysis 2(2), 143–168 (1998)
Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. of the National Academy of Sciences of the USA 93(4), 1591–1595 (1996)
Sethian, J.A.: Level set methods: Evolving interfaces in geometry, fluid mechanics, computer vision, and materials science. Cambridge monographs on applied and computational mathematics, vol. 3. Cambridge University Press, Cambridge (1999)
Terzopoulos, D., Witkin, A., Kass, M.: Constraints on deformable models: Recovering 3D shape and nonrigid motion. Artif. Int. 36(1), 91–123 (1988)
Truyen, R., Deschamps, T., Cohen, L.D.: Clinical Evaluation of an Automatic Path Tracker for Virtual Colonoscopy. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 169–176. Springer, Heidelberg (2001)
Wink, O., Niessen, W.J., Viergever, M.: Fast Delineation and Visualization of Vessels in 3-D Angiographic Images. IEEE TMI 19(4), 337–346 (2000)
Yim, P.J., Choyke, P.L., Summers, R.M.: Gray-Scale Skeletonisation of Small Vessels in Magnetic Resonance Angiography. IEEE TMI 19(6), 568–576 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, R., Ourselin, S. (2003). Combining Front Propagation with Shape Knowledge for Accurate Curvilinear Modelling. In: Ellis, R.E., Peters, T.M. (eds) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2003. MICCAI 2003. Lecture Notes in Computer Science, vol 2879. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39903-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-540-39903-2_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-20464-0
Online ISBN: 978-3-540-39903-2
eBook Packages: Springer Book Archive