Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2850))

Abstract.

The dependency pair approach is one of the most powerful techniques for termination and innermost termination proofs of term rewrite systems (TRSs). For any TRS, it generates inequality constraints that have to be satisfied by weakly monotonic well-founded orders. We improve the dependency pair approach by considerably reducing the number of constraints produced for (innermost) termination proofs. Moreover, we extend transformation techniques to manipulate dependency pairs which simplify (innermost) termination proofs significantly. In order to fully automate the dependency pair approach, we show how transformation techniques and the search for suitable orders can be mechanized efficiently. We implemented our results in the automated termination prover AProVE and evaluated them on large collections of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arts, T.: System description: The dependency pair method. In: Bachmair, L. (ed.) RTA 2000. LNCS, vol. 1833, pp. 261–264. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theoretical Computer Science 236, 133–178 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arts, T., Giesl, J.: A collection of examples for termination of term rewriting using dependency pairs. Technical Report AIB-2001-093, RWTH Aachen (2001)

    Google Scholar 

  4. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambr. Univ. Pr., Cambridge (1998)

    Google Scholar 

  5. Borralleras, C., Ferreira, M., Rubio, A.: Complete monotonic semantic path orderings. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 346–364. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Contejean, E., Marché, C., Monate, B., Urbain, X.: Cime version 2 (2000), Available from http://cime.lri.fr

  7. Dershowitz, N.: Termination of rewriting. J. Symbolic Comp. 3, 69–116 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dershowitz, N.: 33 examples of termination. In: Comon, H., Jouannaud, J.-P. (eds.) TCS School 1993. LNCS, vol. 909, pp. 16–26. Springer, Heidelberg (1995)

    Google Scholar 

  9. Dershowitz, N., Lindenstrauss, N., Sagiv, Y., Serebrenik, A.: A general framework for automatic termination analysis of logic programs. Applicable Algebra in Engineering, Communication and Computing 12(1-2), 117–156 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fissore, O., Gnaedig, I., Kirchner, H.: Cariboo: An induction based proof tool for termination with strategies. In: Proc. 4th PPDP, pp. 62–73. ACM, New York (2002)

    Google Scholar 

  11. Giesl, J., Arts, T.: Verification of Erlang processes by dependency pairs. Appl. Algebra in Engineering, Communication and Computing 12(1-2), 39–72 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Giesl, J., Arts, T., Ohlebusch, E.: Modular termination proofs for rewriting using dependency pairs. Journal of Symbolic Computation 34(1), 21–58 (2002)

    Article  MathSciNet  Google Scholar 

  13. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Improving dependency pairs. Technical Report AIB-2003-043, RWTH Aachen, Germany (2003)

    Google Scholar 

  14. Gramlich, B.: On proving termination by innermost termination. In: Ganzinger, H. (ed.) RTA 1996. LNCS, vol. 1103, pp. 97–107. Springer, Heidelberg (1996), Available from http://aib.informatik.rwth-aachen.de

    Google Scholar 

  15. Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 32–46. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Hirokawa, N., Middeldorp, A.: Tsukuba termination tool. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 311–320. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Huet, G., Hullot, J.-M.: Proofs by induction in equational theories with constructors. Journal of Computer and System Sciences 25, 239–299 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kusakari, K., Nakamura, M., Toyama, Y.: Argument filtering transformation. In: Nadathur, G. (ed.) PPDP 1999. LNCS, vol. 1702, pp. 48–62. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  19. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program termination. In: Proc. POPL 2001, pp. 81–92 (2001)

    Google Scholar 

  20. Middeldorp, A.: Approximating dependency graphs using tree automata techniques. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 593–610. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  21. Ohlebusch, E.: Hierarchical termination revisited. IPL 84(4), 207–214 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ohlebusch, E., Claves, C., Marché, C.: TALP: A tool for the termination analysis of logic programs. In: Bachmair, L. (ed.) RTA 2000. LNCS, vol. 1833, pp. 270–273. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  23. Steinbach, J.: Automatic termination proofs with transformation orderings. In: Hsiang, J. (ed.) RTA 1995. LNCS, vol. 914, pp. 11–25. Springer, Heidelberg (1995); Full version appeared as Technical Report SR-92-23, Universität Kaiserslautern, Germany

    Google Scholar 

  24. Steinbach, J.: Simplification orderings: History of results. Fund. I. 24, 47–87 (1995)

    MATH  MathSciNet  Google Scholar 

  25. Thiemann, R., Giesl, J.: Size-change termination for term rewriting. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 264–278. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  26. Toyama, Y.: Counterexamples to the termination for the direct sum of term rewriting systems. Information Processing Letters 25, 141–143 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  27. Urbain, X.: Automated incremental termination proofs for hierarchically defined term rewriting systems. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 485–498. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S. (2003). Improving Dependency Pairs. In: Vardi, M.Y., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2003. Lecture Notes in Computer Science(), vol 2850. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39813-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39813-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20101-4

  • Online ISBN: 978-3-540-39813-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics