Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2799))

  • 1098 Accesses

Abstract

Double-edge-triggered flip flops (DETFFs) are recognized as power-saving flip flops. We study the same from a low voltage perspective [1-1.5V]. We combine a medium-to-high voltage, plain-MOS-style DETFF technique with a clock-skew technique to derive a new DETFF that is suited to low voltages. Speedwise, our result outperforms existing static DETFFs convincingly in the low voltage range. Powerwise, our flip flop beats others for dynamic input in the lower half of the same range. The dynamic counterpart of our static circuit also shows similar power superiority at low voltages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Afghahi, M., Yuan, J.: Double Edge-Triggered D-Flip-Flops for High-Speed CMOS Circuits. IEEE J. Solid-State Circuits 26(8), 1168–1170 (1991)

    Article  Google Scholar 

  2. Blair, G.M.: Low-power double-edge triggered flipflop. Electronics Letters 33(10), 845–847 (1997)

    Article  Google Scholar 

  3. Gago, A., Escano, R., Hidalgo, J.A.: Reduced Implementation of D-Type DET Flip-Flops. IEEE J. Solid-State Circuits 28(3), 400–402 (1993)

    Article  Google Scholar 

  4. Hossain, R., Wronski, L.D., Albicki, A.: Low Power Design Using Double Edge Triggered Flip-Flops. IEEE Trans. VLSI 2(2), 261–265 (1994)

    Article  Google Scholar 

  5. Kang, S.M.: Accurate simulation of power dissipation in VLSI circuits. IEEE J. Solid-State Circuits SC-21(5), 889–891 (1986)

    Article  Google Scholar 

  6. Lu, S., Ercegovac, M.: A Novel CMOS Implementation of Double-Edge-Triggered Flip-Flops. IEEE J. Solid-State Circuits 25(4), 1008–1010 (1990)

    Article  Google Scholar 

  7. Unger, S.: Double edge-triggered flip-flops. IEEE Trans. Computers C-30(6), 447–451 (1981)

    Article  Google Scholar 

  8. Varma, P., Panwar, B.S., Chakraborty, A., Kapoor, D.: A MOS Approach to CMOS DET Flip-Flop Design. IEEE Trans. Circuits and Systems – I 49(7), 1013–1016 (2002)

    Article  Google Scholar 

  9. Varma, P., Ramganesh, K.N.: Skewing Clock to Decide Races – Double-Edge- Triggered Flip Flop. Electronics Letters 37(25), 1506–1507 (2001)

    Article  Google Scholar 

  10. Yun, K.Y., Beerel, P., Arceo, J.: High-performance two-phase micropipeline building blocks: double edge-triggered latches and burst-mode select and toggle circuits. IEE Proc.-Circuits Devices Syst. 143(5), 282–288 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Varma, P., Chakraborty, A. (2003). Low Voltage, Double-Edge-Triggered Flip Flop. In: Chico, J.J., Macii, E. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2003. Lecture Notes in Computer Science, vol 2799. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39762-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39762-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20074-1

  • Online ISBN: 978-3-540-39762-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics