Nothing Special   »   [go: up one dir, main page]

Skip to main content

Inferring High-Level Behavior from Low-Level Sensors

  • Conference paper
UbiComp 2003: Ubiquitous Computing (UbiComp 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2864))

Included in the following conference series:

Abstract

We present a method of learning a Bayesian model of a traveler moving through an urban environment. This technique is novel in that it simultaneously learns a unified model of the traveler’s current mode of transportation as well as his most likely route, in an unsupervised manner. The model is implemented using particle filters and learned using Expectation-Maximization. The training data is drawn from a GPS sensor stream that was collected by the authors over a period of three months. We demonstrate that by adding more external knowledge about bus routes and bus stops, accuracy is improved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hightower, J., Borriello, G.: Location systems for ubiquitous computing. In: Computer, vol. 34. IEEE Computer Society Press, Los Alamitos (2001)

    Google Scholar 

  2. Bonnifait, P., Bouron, P., Crubillé, P., Meizel, D.: Data fusion of fourABS sensors and GPS for an enhanced localization of car-like vehicles. In: Proc. of the IEEE International Conference on Robotics & Automation (2001)

    Google Scholar 

  3. Cui, Y., Ge, S.: Autonomous vehicle positioning with GPS in urban canyon environments. In: Proc. of the IEEE International Conference on Robotics & Automation (2001)

    Google Scholar 

  4. Ashbrook, D., Starner, T.: Learning significant locations and predicting user movement with gps. In: International Symposium onWearable Computing, Seattle, WA (2002)

    Google Scholar 

  5. Patterson, D., Etzioni, O., Fox, D., Kautz, H.: The Activity Compass. In: Proceedings of UBICOG 2002:First International Workshop on Ubiquitous Computing for Cognitive Aids (2002)

    Google Scholar 

  6. Kautz, H., Arnstein, L., Borriello, G., Etzioni, O., Fox, D.: The Assisted Cognition Project. In: Proceedings of UbiCog 2002: First International Workshop on Ubiquitous Computing for Cognitive Aids, Gothenberg, Sweden (2002)

    Google Scholar 

  7. Doucet, A., de Freitas, N., Gordon, N. (eds.): Sequential Monte Carlo in Practice. Springer, NewYork (2001)

    MATH  Google Scholar 

  8. Liao, L., Fox, D., Hightower, J., Kautz, H., Schulz, D.: Voronoi tracking: Location estimation using sparse and noisy sensor data. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2003)

    Google Scholar 

  9. Bar-Shalom, Y., Li, X.R., Kirubarajan, T.: Estimation with Applications to Tracking and Navigation. John Wiley, Chichester (2001)

    Book  Google Scholar 

  10. Dean, T., Kanazawa, K.: Probabilistic temporal reasoning. In: Proc. of the National Conference on Artificial Intelligence (1988)

    Google Scholar 

  11. Murphy, K.: Dynamic Bayesian Networks: Representation, Inference and Learning. PhD thesis, UC Berkeley, Computer Science Division (2002)

    Google Scholar 

  12. Bar-Shalom, Y., Li, X.R.: Multitarget-Multisensor Tracking: Principles and Techniques. Yaakov Bar-Shalom (1995)

    Google Scholar 

  13. Del Moral, P., Miclo, L.: Branching and interacting particle systems approximations of Feynman-Kac formulae with applications to non linear filtering. In: Seminaire de Probabilites XXXIV. Lecture Notes in Mathematics, vol. 1729. Springer, Heidelberg (2000)

    Google Scholar 

  14. Bilmes, J.: Agentle tutorial on theEMalgorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. Technical Report ICSI-TR-97-021, University of Berkeley (1998)

    Google Scholar 

  15. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE (1989); IEEE Log Number 8825949 (1989)

    Google Scholar 

  16. Levine, R., Casella, G.: Implementations of the Monte Carlo EM algorithm. Journal of Computational and Graphical Statistics 10 (2001)

    Google Scholar 

  17. Wei, G., Tanner, M.: A Monte Carlo implementation of the EM algorithm and the poor man’s data augmentation algorithms. Journal of the American Statistical Association 85 (1990)

    Google Scholar 

  18. County, K.: Gis (graphical information system) (2003), http://www.metrokc.gov/gis/mission.htm

  19. Thrun, S., Langford, J., Fox, D.: Monte Carlo hidden Markov models: Learning non parametric models of partially observable stochastic processes. In: Proc. of the International Conference on Machine Learning (1999)

    Google Scholar 

  20. Bureau, U.C.: Census 2000 tiger/line data (2000), http://www.esri.com/data/download/census2000-tigerline/

  21. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  22. Anderson, C., Domingos, P., Weld, D.: Relational markov models and their application to adaptive web navigation. In: Proceedings of the Eighth International Conference on Knowledge Discovery and Data Mining, pp. 143–152. ACM Press, Edmonton (2002)

    Chapter  Google Scholar 

  23. Sanghai, S., Domingos, P., Weld, D.: Dynamic probabilistic relational models. In: Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence. Morgan Kaufmann, Acapulco (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Patterson, D.J., Liao, L., Fox, D., Kautz, H. (2003). Inferring High-Level Behavior from Low-Level Sensors. In: Dey, A.K., Schmidt, A., McCarthy, J.F. (eds) UbiComp 2003: Ubiquitous Computing. UbiComp 2003. Lecture Notes in Computer Science, vol 2864. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39653-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39653-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20301-8

  • Online ISBN: 978-3-540-39653-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics