Nothing Special   »   [go: up one dir, main page]

Skip to main content

Experiments on Graph Clustering Algorithms

  • Conference paper
Algorithms - ESA 2003 (ESA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2832))

Included in the following conference series:

Abstract

A promising approach to graph clustering is based on the intuitive notion of intra-cluster density vs. inter-cluster sparsity. While both formalizations and algorithms focusing on particular aspects of this rather vague concept have been proposed no conclusive argument on their appropriateness has been given.

As a first step towards understanding the consequences of particular conceptions, we conducted an experimental evaluation of graph clustering approaches. By combining proven techniques from graph partitioning and geometric clustering, we also introduce a new approach that compares favorably.

This work was partially supported by the DFG under grant BR 2158/1-1 and WA 654/13-1 and EU under grant IST-2001-33555 COSIN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  2. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing Surveys 31, 264–323 (1999)

    Article  Google Scholar 

  3. Kannan, R., Vampala, S., Vetta, A.: On Clustering — Good, Bad and Spectral. Foundations of Computer Science 2000, 367–378 (2000)

    Google Scholar 

  4. van Dongen, S.M.: Graph Clustering by Flow Simulation. PhD thesis, University of Utrecht (2000)

    Google Scholar 

  5. Harel, D., Koren, Y.: On clustering using random walks. Foundations of Software Technology and Theoretical Computer Science 2245, 18–41 (2001)

    MathSciNet  Google Scholar 

  6. Hartuv, E., Shamir, R.: A clustering algorithm based on graph connectivity. Information Processing Letters 76, 175–181 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Spielman, D.A., Teng, S.H.: Spectral partitioning works: Planar graphs and finite element meshes. In: IEEE Symposium on Foundations of Computer Science, pp. 96–105 (1996)

    Google Scholar 

  8. Chung, F., Yau, S.T.: Eigenvalues, flows and separators of graphs. In: Proceeding of the 29th Annual ACM Symposium on Theory of Computing, p. 749 (1997)

    Google Scholar 

  9. Chung, F., Yau, S.T.: A near optimal algorithm for edge separators. In: Proceeding of the 26th Annual ACM Symposium on Theory of Computing, pp. 1–8 (1994)

    Google Scholar 

  10. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation – Combinatorial optimization problems and their approximability properties. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  11. Wagner, D.,Wagner, F.: Between Min Cut and Graph Bisection. In Borzyszkowski, A.M., Sokolowski, S., eds.: Lecture Notes in Computer Science, Springer-Verlag (1993) 744–750

    Google Scholar 

  12. Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified NP-complete graph problems. Theoretical Computer Science 1, 237–267 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gaertler, M.: Clustering with spectral methods. Master’s thesis, Universität Konstanz (2002)

    Google Scholar 

  14. Zahn, C.: Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Transactions on Computers C-20, 68–86 (1971)

    Article  Google Scholar 

  15. Chung, F.R.K.: Spectral Graph Theory. Conference Board of the Mathematical Sciences, vol. 52. American Mathematical Society, Providence (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brandes, U., Gaertler, M., Wagner, D. (2003). Experiments on Graph Clustering Algorithms. In: Di Battista, G., Zwick, U. (eds) Algorithms - ESA 2003. ESA 2003. Lecture Notes in Computer Science, vol 2832. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39658-1_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39658-1_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20064-2

  • Online ISBN: 978-3-540-39658-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics