Nothing Special   »   [go: up one dir, main page]

Skip to main content

Who Can Connect in RCC?

  • Conference paper
KI 2003: Advances in Artificial Intelligence (KI 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2821))

Included in the following conference series:

Abstract

We provide a method for integrating de Laguna’s geometry of solids into the region connection calculus (RCC). de Laguna’s geometry of solids is concerned with solid-based (rather than point-based) comparative distance representations using the triadic primitive relation “can-connect”. No formalization is given to the theory in the original version by de Laguna and his work is mainly in the form of a philosophical text. Our main contribution with this work is to give a formalization for de Laguna’s theory within the framework of RCC. Although de Laguna’s notions from the original version are kept intact, some modifications are made as the embedding procedure requires. Furthermore, we make use of the combined strength of the resulting theory to add representations into our formalism which can characterize notions of boundedness/unboundedness and finiteness/infiniteness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cohn, A.G., Hazarika, S.M.: Qualitative spatial representation and reasoning: An overview. Fundamenta Informaticae 46, 1–29 (2001)

    MATH  MathSciNet  Google Scholar 

  2. Cohn, A.G.: Qualitative spatial representation and reasoning techniques. In: Brewka, G., Habel, C., Nebel, B. (eds.) KI 1997. LNCS(LNAI), vol. 1303, pp. 1–30. Springer, Heidelberg (1997)

    Google Scholar 

  3. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: Proc. 3rd Int. Conf. on Knowledge Representation and Reasoning, San Mateo, pp. 165–176. Morgan Kaufmann, San Francisco (1992)

    Google Scholar 

  4. Randell, D.A., Cohn, A.G.: Modelling topological and metrical properties in physical processes. In: Brachman, R., Levesque, H., Reiter, R. (eds.) Proceedings 1st International Conference on the Principles of Knowledge Representation and Reasoning, Los Altos, pp. 55–66. Morgan Kaufmann, San Francisco (1989)

    Google Scholar 

  5. Hernández, D., Clementini, E., Felice, P.D.: Qualitative distances. In: Kuhn, W., Frank, A.U. (eds.) COSIT 1995. LNCS, vol. 988, pp. 45–58. Springer, Heidelberg (1995)

    Google Scholar 

  6. Liu, J.: A method of spatial reasoning based on qualitative trigonometry. Artificial Intelligence 98, 137–168 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Clementini, E., Felice, P.D., Hernández, D.: Qualitative representation of positional information. Artificial Intelligence 95, 317–356 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gotts, N.M.: Toplogy from a single primitive relation: defining topological properties and relations in terms of connection. Technical report, Report 96.23, School of Computer Studies, University of Leeds (1996)

    Google Scholar 

  9. Renz, J., Nebel, B.: Spatial reasoning with topological information. In: Freksa, C., Habel, C., Wender, K.F. (eds.) Spatial Cognition 1998. LNCS (LNAI), vol. 1404, p. 351. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  10. Gotts, N.M., Gooday, J.M., Cohn, A.G.: A connection based approach to commonsense topological description and reasoning. The Monist 79, 51–75 (1996)

    Google Scholar 

  11. de Laguna, T.: The nature of space–I. The journal of Philosophy 19, 393–407 (1922)

    Article  Google Scholar 

  12. de Laguna, T.: The nature of space–II. The journal of Philosophy 19, 421–440 (1922)

    Article  Google Scholar 

  13. de Laguna, T.: Point, line and surface as sets of points. The journal of Philosophy 19, 449–461 (1922)

    Article  Google Scholar 

  14. Cohn, A.G.: A hierarchical representation of qualitative shape based on connection and convexity. In: Kuhn, W., Frank, A.U. (eds.) COSIT 1995. LNCS, vol. 988, pp. 311–326. Springer, Heidelberg (1995)

    Google Scholar 

  15. Cohn, A.G., Randell, D.A., Cui, Z., Bennett, B.: Qualitative spatial reasoning and representation. In: Carreté, N.P., Singh, M.G. (eds.) Qualitative Reasoning and Decision Technologies, Barcelona, CIMNE, pp. 513–522 (1993)

    Google Scholar 

  16. Cohn, A.G., Randell, D.A., Cui, Z.: Taxonomies of logically defined qualitative spatial relations. Journal of Human-Computer Studies (1994)

    Google Scholar 

  17. Clementini, E., Felice, P.D.: A global framework for qualitative shape description. GeoInformatica 1, 1–17 (1997)

    Article  Google Scholar 

  18. Worboys, M.: Metrics and topologies for geographic space. In: Kraak, M.J., Molenaar, M. (eds.) Advances in Geographic Information Systems Research II: Proceedings of the International Symposium on Spatial Data Handling, Delft, PP. 7A.1–7A.11 (1996)

    Google Scholar 

  19. Bennett, B.: Carving up space: existential axioms for logical theories of spatial regions. In: Proceedings of IJCAI 1995 workshop on Spatial and Temporal Reasoning (1995)

    Google Scholar 

  20. Clarke, B.L.: Individuals and points. Notre Dame Journal of Formal Logic 26, 61–75 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  21. Cohn, A.G.: A more expressive formulation of many sorted logic. Journal of Automated Reasoning 3, 113–200 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  22. Adams, R.A.: Calculus: A Complete Course. Addison-Wesley, Reading (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giritli, M. (2003). Who Can Connect in RCC?. In: Günter, A., Kruse, R., Neumann, B. (eds) KI 2003: Advances in Artificial Intelligence. KI 2003. Lecture Notes in Computer Science(), vol 2821. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39451-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39451-8_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20059-8

  • Online ISBN: 978-3-540-39451-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics