Abstract
The proposed quad-dominant mesh adaptation algorithm is based on simplicial optimization. It is driven by an anisotropic Riemannian metric and uses specialized local operators formulated in terms of an L ∞ instead of the usual L 2 distance. Furthermore, the physically-based vertex relocation operator includes an alignment force to explicitly minimize the angular deviation of selected edges from the local eigenvectors of the target metric. Sets of contiguous edges can then be effectively interpreted as active tensor lines. Those lines are not only packed but also simultaneous networked together to form a layered rectangular simplicial mesh that requires little postprocessing to form a cubical-dominant one. Almost all-cubical meshes are possible if the target metric is compatible with such a decomposition and, although presently only two-dimensional tests were performed, a three-dimensional extension is feasible.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
1. George, P.-L. and Borouchaki, H. (1998) Delaunay Triangulation and Meshing. Applications to Finite Elements. Hermes, Paris.
2. Blacker, T. (2001) Automated conformal hexahedral meshing constraints, challenges and opportunities. Engineering with Computers, 17:201–210.
3. Shimada, K., Liao, J.-H., and Itoh, T. (1998) Quadrilateral meshing with directionality control through the packing of square cells. Seventh International Meshing Roundtable, Dearborn, MI, Oct., pp. 61–76, Sandia National Laboratories.
4. Yamakawa, S. and Shimada, K. (2003) Fully-automated hex-dominant mesh generation with directionality control via packing rectangular solid cells. Int. J. Numer. Meth. Engng, 57:2099–2129.
5. Tchon, K.-F., Guibault, F., Dompierre, J., and Camararo, R. (2005) Adaptive hybrid meshing using metric tensor line networks. 17th AIAA Computational Fluid Dynamics Conference, Toronto, ON, Canada, Jun., no. AIAA-2005–5332.
6. Vallet, M.-G. (1992) Génération de maillages éléments finis anisotropes et adaptatifs. Ph.D. thesis, Université Pierre et Marie Curie, Paris VI, France.
7. Simpson, R. B. (1994) Anisotropic mesh transformations and optimal error control. Applied Numerical Mathematics, 14:183–198.
8. Thompson, J. F., Warsi, Z. U. A., and Mastin, C. W. (1985) Numerical grid generation: Foundations and applications. North-Holland.
9. Schneiders, R. (2000) Octree-based hexahedral mesh generation. Int. J. of Comp. Geom. & Applications, 10:383–398.
10. Maréchal, L. (2001) A new approach to octree-based hexahedral meshing. Tenth International Meshing Roundtable, Newport Beach, CA, Oct., pp. 209–221, Sandia National Laboratories.
11. Tchon, K.-F., Dompierre, J., and Camarero, R. (2004) Automated refinement of conformal quadrilateral and hexahedral meshes. Int. J. Numer. Meth. Engng, 59:1539–1562.
12. Benzley, S. E., Harris, N. J., Scott, M., Borden, M., and Owen, S. J. (2005) Conformal refinement and coarsening of unstructured hexahedral meshes. Journal of Computing and Information Science in Engineering, 5:330–337.
13. Bern, M., Eppstein, D., and Erickson, J. (2002) Flipping cubical meshes. Engineering with Computers, 18:173–187.
14. Owen, S. J., Staten, M. L., Canann, S. A., and Saigal, S. (1999) Q-morph: An indirect approach to advancing front quad meshing. Int. J. Numer. Meth. Engng, 44:1317–1340.
15. Owen, S. J. and Saigal, S. (2000) H-morph: An indirect approach to advancing front hex meshing. Int. J. Numer. Meth. Engng, 49:289–312.
16. Lee, Y. K. and Lee, C. K. (2003) A new indirect anisotropic quadrilateral mesh generation scheme with enhanced local mesh smoothing procedures. Int. J. Numer. Meth. Engng, 58:277–300.
17. Meshkat, S. and Talmor, D. (2000) Generating a mixed mesh of hexahedra, pentahedra and tetrahedra from an underlying tetrahedral mesh. Int. J. Numer. Meth. Engng, 49:17–30.
18. Borouchaki, H. and Frey, P. J. (1998) Adaptive triangular-quadrilateral mesh generation. Int. J. Numer. Meth. Engng, 41:915–934.
19. Shimada, K. and Gossard, D. (1995) Bubble mesh: Automated triangular meshing of non-manifold geometry by sphere packing. ACM Third Symposium on Solid Modeling and Applications, Salt Lake City, UT, May, pp. 409–419.
20. Bossen, F. J. and Heckbert, P. S. (1996) A pliant method for anisotropic mesh generation. Fifth International Meshing Roundtable, Pittsburgh, PA, Oct., pp. 63–76, Sandia National Laboratories.
21. Li, X., Shephard, M. S., and Beall, M. W. (2003) Accounting for curved domains in mesh adaptation. Int. J. Numer. Meth. Engng, 58:247–276.
22. Farhat, C., Degand, C., Koobus, B., and Lesoinne, M. (1998) Torsional springs for two-dimensional dynamic unstructured fluid meshes. Computer Methods in Applied Mechanics and Engineering, 163:231–245.
23. Lewis, R. W., Zheng, Y., and Usmani, A. S. (1995) Aspects of adaptive mesh generation based on domain decomposition and Delaunay triangulation. Finite Elements Anal. Des., 20:47–70.
24. Tchon, K.-F., Khachan, M., Guibault, F., and Camarero, R. (2005) Threedimensional anisotropic geometric metrics based on local domain curvature and thickness. Comp.-Aided Design, 37:173–187.
25. Li, X., Remacle, J.-F., Chevaugeon, N., and Shephard, M. S. (2004) Anisotropic mesh gradation control. Thirteenth International Meshing Roundtable, Williamsburg, VA, Sep., pp. 401–412, Sandia National Laboratories.
26. Habashi, W. G., Dompierre, J., Bourgault, Y., Aït-Ali-Yahia, D., Fortin, M., and Vallet, M.-G. (2000) Anisotropic mesh adaptation: Towards user-independent, mesh-independent and solver-independent CFD. Part I: General principles. Int. J. Numer. Meth. Fluids, 32:725–744.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer
About this paper
Cite this paper
Tchon, KF., Camarero, R. (2006). Quad-Dominant Mesh Adaptation Using Specialized Simplicial Optimization. In: Pébay, P.P. (eds) Proceedings of the 15th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34958-7_2
Download citation
DOI: https://doi.org/10.1007/978-3-540-34958-7_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34957-0
Online ISBN: 978-3-540-34958-7
eBook Packages: EngineeringEngineering (R0)