Nothing Special   »   [go: up one dir, main page]

Skip to main content

Quad-Dominant Mesh Adaptation Using Specialized Simplicial Optimization

  • Conference paper
Proceedings of the 15th International Meshing Roundtable

Abstract

The proposed quad-dominant mesh adaptation algorithm is based on simplicial optimization. It is driven by an anisotropic Riemannian metric and uses specialized local operators formulated in terms of an L instead of the usual L 2 distance. Furthermore, the physically-based vertex relocation operator includes an alignment force to explicitly minimize the angular deviation of selected edges from the local eigenvectors of the target metric. Sets of contiguous edges can then be effectively interpreted as active tensor lines. Those lines are not only packed but also simultaneous networked together to form a layered rectangular simplicial mesh that requires little postprocessing to form a cubical-dominant one. Almost all-cubical meshes are possible if the target metric is compatible with such a decomposition and, although presently only two-dimensional tests were performed, a three-dimensional extension is feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. 1. George, P.-L. and Borouchaki, H. (1998) Delaunay Triangulation and Meshing. Applications to Finite Elements. Hermes, Paris.

    Google Scholar 

  2. 2. Blacker, T. (2001) Automated conformal hexahedral meshing constraints, challenges and opportunities. Engineering with Computers, 17:201–210.

    Article  MATH  Google Scholar 

  3. 3. Shimada, K., Liao, J.-H., and Itoh, T. (1998) Quadrilateral meshing with directionality control through the packing of square cells. Seventh International Meshing Roundtable, Dearborn, MI, Oct., pp. 61–76, Sandia National Laboratories.

    Google Scholar 

  4. 4. Yamakawa, S. and Shimada, K. (2003) Fully-automated hex-dominant mesh generation with directionality control via packing rectangular solid cells. Int. J. Numer. Meth. Engng, 57:2099–2129.

    Article  MATH  Google Scholar 

  5. 5. Tchon, K.-F., Guibault, F., Dompierre, J., and Camararo, R. (2005) Adaptive hybrid meshing using metric tensor line networks. 17th AIAA Computational Fluid Dynamics Conference, Toronto, ON, Canada, Jun., no. AIAA-2005–5332.

    Google Scholar 

  6. 6. Vallet, M.-G. (1992) Génération de maillages éléments finis anisotropes et adaptatifs. Ph.D. thesis, Université Pierre et Marie Curie, Paris VI, France.

    Google Scholar 

  7. 7. Simpson, R. B. (1994) Anisotropic mesh transformations and optimal error control. Applied Numerical Mathematics, 14:183–198.

    Article  MATH  Google Scholar 

  8. 8. Thompson, J. F., Warsi, Z. U. A., and Mastin, C. W. (1985) Numerical grid generation: Foundations and applications. North-Holland.

    Google Scholar 

  9. 9. Schneiders, R. (2000) Octree-based hexahedral mesh generation. Int. J. of Comp. Geom. & Applications, 10:383–398.

    MATH  Google Scholar 

  10. 10. Maréchal, L. (2001) A new approach to octree-based hexahedral meshing. Tenth International Meshing Roundtable, Newport Beach, CA, Oct., pp. 209–221, Sandia National Laboratories.

    Google Scholar 

  11. 11. Tchon, K.-F., Dompierre, J., and Camarero, R. (2004) Automated refinement of conformal quadrilateral and hexahedral meshes. Int. J. Numer. Meth. Engng, 59:1539–1562.

    Article  MATH  Google Scholar 

  12. 12. Benzley, S. E., Harris, N. J., Scott, M., Borden, M., and Owen, S. J. (2005) Conformal refinement and coarsening of unstructured hexahedral meshes. Journal of Computing and Information Science in Engineering, 5:330–337.

    Article  Google Scholar 

  13. 13. Bern, M., Eppstein, D., and Erickson, J. (2002) Flipping cubical meshes. Engineering with Computers, 18:173–187.

    Article  Google Scholar 

  14. 14. Owen, S. J., Staten, M. L., Canann, S. A., and Saigal, S. (1999) Q-morph: An indirect approach to advancing front quad meshing. Int. J. Numer. Meth. Engng, 44:1317–1340.

    Article  MATH  Google Scholar 

  15. 15. Owen, S. J. and Saigal, S. (2000) H-morph: An indirect approach to advancing front hex meshing. Int. J. Numer. Meth. Engng, 49:289–312.

    Article  MATH  Google Scholar 

  16. 16. Lee, Y. K. and Lee, C. K. (2003) A new indirect anisotropic quadrilateral mesh generation scheme with enhanced local mesh smoothing procedures. Int. J. Numer. Meth. Engng, 58:277–300.

    Article  MATH  Google Scholar 

  17. 17. Meshkat, S. and Talmor, D. (2000) Generating a mixed mesh of hexahedra, pentahedra and tetrahedra from an underlying tetrahedral mesh. Int. J. Numer. Meth. Engng, 49:17–30.

    Article  MATH  Google Scholar 

  18. 18. Borouchaki, H. and Frey, P. J. (1998) Adaptive triangular-quadrilateral mesh generation. Int. J. Numer. Meth. Engng, 41:915–934.

    Article  MATH  Google Scholar 

  19. 19. Shimada, K. and Gossard, D. (1995) Bubble mesh: Automated triangular meshing of non-manifold geometry by sphere packing. ACM Third Symposium on Solid Modeling and Applications, Salt Lake City, UT, May, pp. 409–419.

    Google Scholar 

  20. 20. Bossen, F. J. and Heckbert, P. S. (1996) A pliant method for anisotropic mesh generation. Fifth International Meshing Roundtable, Pittsburgh, PA, Oct., pp. 63–76, Sandia National Laboratories.

    Google Scholar 

  21. 21. Li, X., Shephard, M. S., and Beall, M. W. (2003) Accounting for curved domains in mesh adaptation. Int. J. Numer. Meth. Engng, 58:247–276.

    Article  MATH  Google Scholar 

  22. 22. Farhat, C., Degand, C., Koobus, B., and Lesoinne, M. (1998) Torsional springs for two-dimensional dynamic unstructured fluid meshes. Computer Methods in Applied Mechanics and Engineering, 163:231–245.

    Article  MATH  Google Scholar 

  23. 23. Lewis, R. W., Zheng, Y., and Usmani, A. S. (1995) Aspects of adaptive mesh generation based on domain decomposition and Delaunay triangulation. Finite Elements Anal. Des., 20:47–70.

    Article  MATH  Google Scholar 

  24. 24. Tchon, K.-F., Khachan, M., Guibault, F., and Camarero, R. (2005) Threedimensional anisotropic geometric metrics based on local domain curvature and thickness. Comp.-Aided Design, 37:173–187.

    Article  Google Scholar 

  25. 25. Li, X., Remacle, J.-F., Chevaugeon, N., and Shephard, M. S. (2004) Anisotropic mesh gradation control. Thirteenth International Meshing Roundtable, Williamsburg, VA, Sep., pp. 401–412, Sandia National Laboratories.

    Google Scholar 

  26. 26. Habashi, W. G., Dompierre, J., Bourgault, Y., Aït-Ali-Yahia, D., Fortin, M., and Vallet, M.-G. (2000) Anisotropic mesh adaptation: Towards user-independent, mesh-independent and solver-independent CFD. Part I: General principles. Int. J. Numer. Meth. Fluids, 32:725–744.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Tchon, KF., Camarero, R. (2006). Quad-Dominant Mesh Adaptation Using Specialized Simplicial Optimization. In: Pébay, P.P. (eds) Proceedings of the 15th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34958-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-34958-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34957-0

  • Online ISBN: 978-3-540-34958-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics