Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
H. A. Abbass, N. X. Hoai, and R. I. McKay. AntTAG: A new method to compose computer programs using colonies of ants. In The IEEE Congress on Evolutionary Computation, pages 1654-1659, 2002.
P. J. Angeline. Genetic programming and emergent intelligence. In K. E. Kinnear, Jr., editor, Advances in Genetic Programming, chapter 4, pages 75-98. MIT, Cambridge, MA, 1994.
P. J. Angeline. Two self adaptive crossover operations for genetic programming. In Advances in Genetic Programming II, pages 89-110. MIT Press, Cambridge, MA, 1995.
P. J. Angeline and J. B. Pollack. Coevolving high-level representations. In C. G. Langton, editor, Artificial Life III, volume XVII, pages 55-71, Santa Fe, New Mexico. Addison-Wesley, Reading, MA, 1994.
D. Angluin. Negative results for equivalence queries. Mach. Learn. 5 (2):121-150, 1990.
S. Baluja. Population-based incremental learning: A method for in-tegrating genetic search based function optimization and competitive learning. Technical Report CMU-CS-94-163, Carnegie Mellon University, Pittsburgh, PA, 1994.
S. Baluja. Using a priori knowledge to create probabilistic models for optimization. Int. J. Approx. Reason., 31(3):193-220, 2002.
W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone. Genetic Pro-gramming - An Introduction; On the Automatic Evolution of Computer Programs and its Applications. Morgan Kaufmann, dpunkt.verlag, 1998.
E. Bengoetxea, P. Larrañaga, I. Bloch, A. Perchant, and C. Boeres. Inexact graph matching by means of estimation of distribution algo-rithms. Pattern Recognit., 35(12):2867-2880, 2002.
R. Blanco, I. Inza, and P. Larrañaga. Learning Bayesian networks in the space of structures by estimation of distribution algorithms. Int. J. Intell. Syst. 18(2):205-220, 2003.
E. Bonabeau, M. Dorigo, and T. Theraulaz. From Natural to Artificial Swarm Intelligence. Oxford University Press, New York, 1999.
M. Boryczka and Z. J. Czech. Solving approximation problems by ant colony programming. In W. B. Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. Burke, and N. Jonoska, editors, GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, page 133, New York. Morgan Kaufmann, Los Altos, CA, 2002.
P. Bosman and D. Thierens. An algorithmic framework for density estimation based evolutionary algorithms. Technical Report Technical Report UU-CS-1999-46, Utrecht University, 1999.
P. A. N. Bosman and E. D. de Jong. Grammar transformations in an eda for genetic programming. In Special session: OBUPM - Optimization by Building and Using Probabilistic Models, GECCO, Seattle, Washington, USA, 2004.
S. F. Chen. Bayesian grammar induction for language modeling. In Meeting of the Association for Computational Linguistics, pages 228-235, 1995.
S. F. Chen. Buidling Probabilistic Models for Natural Language. PhD thesis, Harvard University Press, Cambridge, MA, USA, 1996.
N. Cramer. A representation for the adaptive generation of simple sequential programs. In Proceedings of an International Conference on Genetic Algorithms and their Applications, pages 183-187, CarnegieMellon University, Pittsburgh, PA, USA, 1985.
N. L. Cramer. A representation for the adaptive generation of simple sequential programs. In J. J. Grefenstette, editor, Proceedings of an Inter-national Conference on Genetic Algorithms and the Applications, pages 183-187, Carnegie-Mellon University, Pittsburgh, PA, USA, 1985.
A. S. d’Avila Garcez, K. Broda, and D. M. Gabbay. Symbolic knowledge extraction from trained neural networks: a sound approach. Artif. Intell. 125 (1-2):155-207, 2001.
P. D’haeseleer. Context preserving crossover in genetic programming. In Proceedings of the 1994 IEEE World Congress on Computational Intelligence, volume 1, pages 256-261, Orlando, Florida, USA. IEEE, New York, 1994.
D. E. Goldberg. Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading, MA, 1989.
J. Green, J. L. Whalley, and C. G. Johnson. Automatic programming with ant colony optimization. In M. Withall and C. Hinde, editors, Proceedings of the 2004 UK Workshop on Computational Intelligence, pages 70-77. Loughborough University, 2004.
F. Gruau. On using syntactic constraints with genetic programming. In P. J. Angeline and K. E. Kinnear, Jr., editors, Advances in Genetic Programming 2, chapter 19, pages 377-394. MIT, Cambridge, MA, USA, 1996.
P. Grunwald. A minimum description length approach to grammar inference. In Connectionist, Statistical and Symbolic Approaches to Learning for Natural Language, volume 1004 of Lecture Notes in AI, pages 203-216. Springer, Berlin Heidelberg New York, 1994.
P. Haddawy. Generating Bayesian networks from probability logic knowledge bases. In Proceedings of the Tenth Conference on Uncertainty in Articial Intelligence, 1994.
G. Harik. Linkage learning via probabilistic modeling in the ECGA. Technical Report IlliGAL Report No. 99010, University of Illinois at UrbanaChampaign, 1999.
G. R. Harik, F. G. Lobo, and D. E. Goldberg. The compact genetic algorithm. IEEE Trans. Evol. Comput. 3(4):287-297, 1999.
J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.
H. Iba and H. de Garis. Extending genetic programming with recombinative guidance. In Advances in Genetic Programming II, pages 69-88. MIT, Cambridge, MA, 1996.
A. K. Joshi, L. S. Levy, and M. Takahashi. Tree adjunct grammars. J. Comput. Syst. Sci. 10(1):136-163, 1975.
C. Keber and M. G. Schuster. Option valuation with generalized ant programming. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 74-81. Morgan Kaufmann, Los Altos, CA, 2002.
B. Keller and R. Lutz. Evolving stochastic context-free grammars from examples using a minimum description length principle. In Proceedings of Workshop on Automata Induction Grammatical Inference and Language Acquisition, ICML-97, Nashville, Tennessee, 1997.
J. R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT, Cambridge, MA, USA, 1992.
W. B. Langdon and R. Poli. Foundations of Genetic Programming. Springer, Berlin Heidelberg New York, 2002.
K. Lari and S. J. Young. The estimation of stochastic context-free grammars using the inside-outside algorithm. Comput. Speech Lang. 4:35-56, 1990.
K. Lari and S. J. Young. Applications of stochastic context-free grammars using the inside-outside algorithm. Comput. Speech Lang. 5: 237-257, 1991.
P. Larrañaga and J. A. Lozano. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Kluwer, Dordrecht, 2001.
P. P. Le, A. Bah, and L. H. Ungar. Using prior knowledge to improve genetic network reconstruction from microarray data. Silico Biol. 4(27), 2004.
C. Manning and H. Schütze. Foundations of Statistical Natural Language Processing. MIT, Cambridge, MA, 1999.
R. S. Michalski. Learnable evolution model: Evolutionary processes guided by machine learning. Mach. Learn. 38:9-40, 2000.
D. J. Montana. Strongly typed genetic programming. BBN Technical Report #7866, Bolt Beranek and Newman, Inc., 10 Moulton Street, Cambridge, MA 02138, USA, 1993.
H. Müehlenbein and G. Paaß. From recombination of genes to the estimation of distributions i.binary parameters. In Lecture Notes in Computer Science 1411: Parallel Problem Solving from Nature, PPSN IV, pages 178-187. Springer, Berlin Heidelberg New York, 1996.
H. Mühlenbein and T. Mahnig. The factorized distribution algorithm for additively decompressed functions. In 1999 Congress on Evolutionary Computation, pages 752-759, Piscataway, NJ. IEEE Service Center, 1999.
P. Nordin. A compiling genetic programming system that directly manipulates the machine code. In K. E. KinnearJr, ., editor, Advances in Genetic Programming, chapter 14, pages 311-331. MIT, Cambridge, MA, 1994.
M. O’Neill and C. Ryan. Grammatical evolution. IEEE Trans. Evol. Comput. 5(4):349-358, 2001.
U.-M. O’Reilly and F. Oppacher. The troubling aspects of a building block hypothesis for genetic programming. In L. D. Whitley and M. D. Vose, editors, Foundations of Genetic Algorithms 3, pages 73-88, Estes Park, Colorado, USA. Morgan Kaufmann, Los Altos, CA, 1995.
M. Osborne. DCG induction using MDL and parsed corpora. In J. Cussens, editor, Proceedings of the 1st Workshop on Learning Language in Logic, pages 63-71, Bled, Slovenia, 1999.
T. K. Paul and H. Iba. Identification of informative genes for molecular classification using probabilistic model building genetic algorithm. In e. a. Kalyanmoy Deb, editor, Proceedings of Genetic and Evolutionary Computation (GECCO 2004) (Lecture Notes in Computer Science), volume 3102, pages 414-425, Seattle, USA, 2004.
M. Pelikan. Bayesian optimization algorithm: From single level to hierarchy. PhD thesis, University of Illinois at Urbana-Champaign, Urbana, IL, 2002. Also IlliGAL Report No. 2002023.
M. Pelikan, D. E. Goldberg, J. Ocenasek, and S. Trebst. Robust and scalable black-box optimization, hierarchy, and Ising spin glasses. IlliGAL Report No. 2003019, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 2003.
F. Pereira and Y. Schabes. Inside-outside reestimation from partially bracketed corpora. In Proceedings of the 30th conference on Association for Computational Linguistics, pages 128-135. Association for Computational Linguistics, 1992.
P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants. Springer, Berlin Heidelberg New York, 1990.
A. Ratle and M. Sebag. Avoiding the bloat with probabilistic grammarguided genetic programming. In P. Collet, C. Fonlupt, J.-K. Hao, E. Lutton, and M. Schoenauer, editors, Artificial Evolution 5th International Conference, Evolution Artificielle, EA 2001, volume 2310 of LNCS, pages 255-266, Creusot, France. Springer, Berlin Heidelberg New York, 2001.
J. Rissanen. Stochastic Complexity in Statistical Inquiry. World Scientific, Singapore, 1989.
S. A. Rojas and P. J. Bentley. A grid-based ant colony system for automatic program synthesis. In M. Keijzer, editor, Late Breaking Papers at the 2004 Genetic and Evolutionary Computation Conference, Seattle, Washington, USA, 2004.
J. P. Rosca. Analysis of complexity drift in genetic programming. In J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo, editors, Genetic Programming 1997: Proceedings of the Second Annual Conference, pages 286-294, Stanford University, CA, USA. Morgan Kaufmann, Los Altos, CA, 1997.
J. P. Rosca and D. H. Ballard. Genetic programming with adaptive representations. Technical Report TR 489, University of Rochester, Computer Science Department, Rochester, NY, USA, 1994.
O. Roux and C. Fonlupt. Ant programming: or how to ants for automatic programming. In Proceedings of the Second International Conference on Ant Algorithms (ANTS2000), Belgium, 2000.
R. Sagarna and J. Lozano. On the performance of estimation of distribution algorithms applied to software testing. Appl. Artif. Intell. 19(5): 457-489, 2004.
Y. Sakakibara. Learning contextfree grammars from structural data in polynomial time. Theor. Comput. Sci. 76:223-242, 1990.
Y. Sakakibara. Efficient learning of context-free grammars from positive structural examples. Inf. Comput. 97(1):23-60, 1992.
Y. Sakakibara. Recent advances of grammatical inference. Theor.Comput. Sci. 185(1):15-45, 1997.
R. P. Salustowicz and J. Schmidhuber. Probabilistic incremental program evolution. Evol. Comput. 5(2):123-141, 1997.
K. Sastry and D. E. Goldberg. Probabilistic model building and competent genetic programming. In R. L. Riolo and B. Worzel, editors, Genetic Programming Theory and Practise, chapter 13, pages 205-220. Kluwer, Dordecht, 2003.
J. Schmidhuber. Evolutionary principles in self-referential learning. on learning now to learn: The meta-meta-meta…-hook. Diploma thesis, Technische Universitat Munchen, Germany, 1987.
Y. Shan. Program Distribution Estimation with Grammar Models. PhD thesis, University of New South Wales, Australia, 2005.
Y. Shan, R. McKay, R. Baxter, H. Abbass, D. Essam, and H. Nguyen. Grammar model-based program evolution. In Proceedings of The Congress on Evolutionary Computation, Portland, USA. IEEE, New York, 2004.
Y. Shan, R. I. McKay, H. A. Abbass, and D. Essam. Program evolution with explicit learning: a new framework for program automatic synthesis. In Proceedings of 2003 Congress on Evolutionary Computation, Canberra, Australia. University College, University of New South Wales, Australia, 2003.
W. M. Spears, K. A. D. Jong, T. Bäck, D. B. Fogel, and H. de Garis. An overview of evolutionary computation. In P. Brazdil, editor, Machine Learning: ECML-93, European Conference on Machine Learning, pages 442-459, Vienna, Austria. Springer, Berlin Heidelberg New York, 1993.
A. Stolcke. Bayesian Learning of Probabilistic Language Models. PhD thesis, University of California, Berkeley, CA, 1994.
I. Tanev. Implications of incorporating learning probabilistic contextsensitive grammar in genetic programming on evolvability of adaptive locomotion gaits of snakebot. In Proceedings of GECCO 2004, Seattle, Washington, USA, 2004.
A. Teller and M. Veloso. PADO: A new learning architecture for object recognition. In K. Ikeuchi and M. Veloso, editors, Symbolic Visual Learning, pages 81-116. Oxford University Press, Oxford, 1996.
G. G. Towell and J. W. Shavlik. Extracting refined rules from knowledge-based neural networks. Mach. Learn. 13(1):71-101, 1993.
C. S. Wallace and D. M. Boulton. An information measure for classification. Comput. J. 11(2):185-194, 1968.
C. S. Wallace and D. L. Dowe. Minimum message length and kolmogorov complexity. Comput. J. 42(4):270-283, 1999.
C. S. Wallace and P. R. Freeman. Estimation and inference by compact coding. J. R. Statist. Soc. Ser. B (Methodological), 49(3):240-265, 1987.
P. Whigham. Grammatically-based genetic programming. In J. P. Rosca, editor, Proceedings of the Workshop on Genetic Programming: From Theory to Real-World Applications, pages 33-41, Tahoe City, California, USA, 1995.
P. Whigham. Inductive bias and genetic programming. In Proceedings of First International Conference on Genetic Algorithms in Engineer-ing Systems: Innovations and Applications, pages 461-466. IEE, London, 1995.
P. Whigham. A schema theorem for context-free grammars. In 1995 IEEE Conference on Evolutionary Computation, volume 1, pages 178-181, Perth, Australia. IEEE, New York, 1995.
P. Whigham and F. Recknagel. Predicting chlorophyll-a in freshwater lakes by hybridising process-based models and genetic algorithms. Ecol. Modell. 146(1-3):243-252, 2001.
M. L. Wong and K. S. Leung. Genetic logic programming and applications. IEEE Expert, 10(5):68-76, 1995.
K. Yanai and H. Iba. Estimation of distribution programming based on Bayesian network. In Proceedings of Congress on Evolutionary Computation, pages 1618-1625, Canberra, Australia, 2003.
M. Zlochin, M. Birattari, N. Meuleau, and M. Dorigo. Model-based search for combinatorial optimization: A critical survey. Ann. Oper. Res. 131:373-395, 2004.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Shan, Y., McKay, R.I., Essam, D., Abbass, H.A. (2006). A Survey of Probabilistic Model Building Genetic Programming. In: Pelikan, M., Sastry, K., CantúPaz, E. (eds) Scalable Optimization via Probabilistic Modeling. Studies in Computational Intelligence, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34954-9_6
Download citation
DOI: https://doi.org/10.1007/978-3-540-34954-9_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34953-2
Online ISBN: 978-3-540-34954-9
eBook Packages: EngineeringEngineering (R0)