Nothing Special   »   [go: up one dir, main page]

Skip to main content

Practical Gaze Point Detecting System

  • Conference paper
Pattern Recognition (DAGM 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3175))

Included in the following conference series:

Abstract

In this paper, we propose the new gaze detection system with dual cameras (a wide and a narrow view camera). In order to locate the user’s eye position accurately, the narrow-view camera has the functionalities of auto focusing/panning/tilting based on the detected 3D eye positions from the wide view camera. In addition, we use the IR-LED illuminators for wide and narrow view camera, which can ease the detecting of facial features, pupil and iris position. To overcome the problem of specular reflection on glasses by illuminator, we use dual IR-LED illuminators for wide and narrow view camera. Experimental results show that the gaze detection error between the computed positions and the real ones is about 2.89 cm of RMS error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wang, J., Sung, E.: Study on Eye Gaze Estimation. IEEE Trans. on SMC 32(3), 332–350 (2002)

    Google Scholar 

  2. Azarbayejani, A.: Visually Controlled Graphics. IEEE Trans. PAMI 15(6), 602–605 (1993)

    Google Scholar 

  3. Park, K.R., et al.: Gaze Point Detection by Computing the 3D Positions and 3D Motions of Face. IEICE Trans. Inf.&Syst. E.83-D(4), 884–894 (2000)

    Google Scholar 

  4. Park, K.R., et al.: Gaze Detection by Estimating the Depth and 3D Motions of Facial Features in Monocular Images. IEICE Trans. Fundamentals E.82-A(10), 2274–2284 (1999)

    Google Scholar 

  5. Ohmura, K., et al.: Pointing Operation Using Detection of Face Direction from a Single View. IEICE Trans. Inf.&Syst. J72-D-II(9), 1441–1447 (1989)

    Google Scholar 

  6. Ballard, P., et al.: Controlling a Computer via Facial Aspect. IEEE Trans. on SMC 25(4), 669–677 (1995)

    Google Scholar 

  7. Gee, A., et al.: Fast visual tracking by temporal consensus. Image and Vision Computing 14, 105–114 (1996)

    Article  Google Scholar 

  8. Heinzmann, J., et al.: 3D Facial Pose and Gaze Point Estimation using a Robust Real-Time Tracking Paradigm. In: Proceedings of ICAFGR, pp. 142–147 (1998)

    Google Scholar 

  9. Rikert, T.: Gaze Estimation using Morphable Models. In: ICAFGR, pp. 436–441 (1998)

    Google Scholar 

  10. Ali-A-L, A., et al.: Man-machine Interface through Eyeball Direction of Gaze. In: Proc. of the Southeastern Symposium on System Theory, pp. 478–482 (1997)

    Google Scholar 

  11. Tomono, A., et al.: Eye Tracking Method Using an Image Pickup Apparatus. European Patent Specification-94101635 (1994)

    Google Scholar 

  12. Porrill, J., et al.: Robust and Optimal Use of Information in Stereo Vision. Nature 397(6714), 63–66 (1999)

    Article  Google Scholar 

  13. Varchmin, A.C., et al.: Image based Recognition of Gaze Direction Using Adaptive Methods. Gesture and Sign Language in Human-Computer Interaction. In: Int. Gesture Workshop Proc., Berlin, Germany, pp. 245–257 (1998)

    Google Scholar 

  14. Heinzmann, J., et al.: Robust Real-time Face Tracking and Gesture Recognition. In: Proc. of the IJCAI, vol. 2, pp. 1525–1530 (1997)

    Google Scholar 

  15. Matsumoto, Y., et al.: An Algorithm for Real-time Stereo Vision Implementation of Head Pose and Gaze Direction Measurement. In: Proc. the ICAFGR, pp. 499–504 (2000)

    Google Scholar 

  16. Newman, R., et al.: Real-time Stereo Tracking for Head Pose and Gaze Estimation. In: Proceedings the 4th ICAFGR 2000, pp. 122–128 (2000)

    Google Scholar 

  17. Betke, M., et al.: Gaze Detection via Self-organizing Gray-scale Units. In: Proc. Int.Workshop on Recog., Analy., and Tracking of Faces and Gestures in Real-Time System, pp. 70–76 (1999)

    Google Scholar 

  18. Park, K.R., et al.: Intelligent Process Control via Gaze Detection Technology. EAAI 13(5), 577–587 (2000)

    Google Scholar 

  19. Park, K.R., et al.: Gaze Position Detection by Computing the 3 Dimensional Facial Positions and Motions. Pattern Recognition 35(11), 2559–2569 (2002)

    Article  MATH  Google Scholar 

  20. Park, K.R., et al.: Facial and Eye Gaze detection. In: Bülthoff, H.H., Lee, S.-W., Poggio, T.A., Wallraven, C. (eds.) BMCV 2002. LNCS, vol. 2525, pp. 368–376. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  21. Matsumoto, Y.: An Algorithm for Real-time Stereo Vision Implementation of Head Pose and Gaze Direction Measurement. In: ICFGR, pp. 499–505 (2000)

    Google Scholar 

  22. Wolfe, B., Eichmann, D.: A Neural Network Approach to Tracking Eye Position. International Journal Human Computer Interaction 9(1), 59–79 (1997)

    Article  Google Scholar 

  23. Beymer, D., Flickner, M.: Eye Gaze Tracking Using an Active Stereo Head. IEEE Computer Vision and Pattern Recognition (2003)

    Google Scholar 

  24. Zhu, J., et al.: Subpixel Eye Gaze Tracking. In: International Conference on Face and Gesture Recognition (2002)

    Google Scholar 

  25. Stiefelhagen, R., Yang, J., Waibel, A.: Tracking Eyes and Monitoring Eye Gaze. In: Proceedings of Workshop on Perceptual User Interfaces, pp. 98–100 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Park, K.R. et al. (2004). Practical Gaze Point Detecting System. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds) Pattern Recognition. DAGM 2004. Lecture Notes in Computer Science, vol 3175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28649-3_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28649-3_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22945-2

  • Online ISBN: 978-3-540-28649-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics