Nothing Special   »   [go: up one dir, main page]

Skip to main content

A General Approach to Comparing Infinite-State Systems with Their Finite-State Specifications

  • Conference paper
CONCUR 2004 - Concurrency Theory (CONCUR 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3170))

Included in the following conference series:

Abstract

We introduce a generic family of behavioral relations for which the problem of comparing an arbitrary transition system to some finite-state specification can be reduced to a model checking problem against simple modal formulae. As an application, we derive decidability of several regular equivalence problems for well-known families of infinite-state systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. I&C 127(2), 91–101 (1996)

    MathSciNet  MATH  Google Scholar 

  2. Abdulla, P.A., Čerāns, K., Jonsson, B., Yih-kuen, T.: Algorithmic analysis of programs with well quasi-ordered domains. I&C 160(1–2), 109–127 (2000)

    MathSciNet  MATH  Google Scholar 

  3. Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: Decidability of bisimulation equivalence for processes generating context-free languages. JACM 40(3), 653–682 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baeten, J.C.M., van Glabbeek, R.J.: Another look at abstraction in processalgebra. In: Ottmann, T. (ed.) ICALP 1987. LNCS, vol. 267, pp. 84–94. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

  5. Bouajjani, A.: Languages, rewriting systems, and verification of infinite-state systems. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 24–39. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Bouajjani, A., Mayr, R.: Model checking lossy vector addition systems. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 323–333. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  7. Browne, M.C., Clarke, E.M., Grumberg, O.: Characterizing finite Kripke structures in propositional temporal logic. TCS 59(1–2), 115–131 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burkart, O., Caucal, D., Moller, F., Steffen, B.: Verification on infinite structures. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, pp. 545–623. Elsevier, Amsterdam (2001)

    Chapter  Google Scholar 

  9. Esparza, J., Nielsen, M.: Decidability issues for Petri nets — a survey. Journal of Information Processing and Cybernetics 30(3), 143–160 (1994)

    MATH  Google Scholar 

  10. Finkel, A., Schnoebelen, P.: Well structured transition systems everywhere! TCS 256(1–2), 63–92 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hirshfeld, Y., Jerrum, M.: Bisimulation equivalence is decidable for normed process algebra. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 412–421. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  12. Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial algorithm for deciding bisimilarity of normed context-free processes. TCS 158(1–2), 143–159 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial algorithm for deciding bisimulation equivalence of normed basic parallel processes. MSCS 6(3), 251–259 (1996)

    MathSciNet  MATH  Google Scholar 

  14. Jančar, P.: Undecidability of bisimilarity for Petri nets and some related problems. TCS 148(2), 281–301 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jančar, P., Kučera, A., Mayr, R.: Deciding bisimulation-like equivalences with finite-state processes. TCS 258(1–2), 409–433 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Jančar, P., Kučera, A., Moller, F.: Simulation and bisimulation over one-counter processes. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 334–345. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  17. Kučera, A.: On finite representations of infinite-state behaviours. IPL 70(1), 23–30 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kučera, A., Esparza, J.: A logical viewpoint on process-algebraic quotients. JLC 13(6), 863–880 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Kučera, A., Jančar, P.: Equivalence-checking with infinite-state systems: Techniques and results. In: Grosky, W.I., Plášil, F. (eds.) SOFSEM 2002. LNCS, vol. 2540, pp. 41–73. Springer, Heidelberg (2002)

    Google Scholar 

  20. Kučera, A., Mayr, R.: A generic framework for checking semantic equivalences between pushdown automata and finite-state automata. In: Proceedings of IFIP TCS 2004. Kluwer, Dordrecht (to appear, 2004)

    Google Scholar 

  21. Kučera, A.: Ph. Schnoebelen. A general approach to comparing infinite-state systems with their finite-state specifications. Technical report FIMU-RS-2004-05, Faculty of Informatics, Masaryk University (2004)

    Google Scholar 

  22. Lugiez, D., Schnoebelen., P.: The regular viewpoint on PA-processes. TCS 274(1–2), 89–115 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mayr, R.: On the complexity of bisimulation problems for pushdown automata. In: Watanabe, O., Hagiya, M., Ito, T., van Leeuwen, J., Mosses, P.D. (eds.) TCS 2000. LNCS, vol. 1872, pp. 474–488. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  24. Mayr, R.: Decidability of model checking with the temporal logic EF. TCS 256(1–2), 31–62 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  26. Müller-Olm, M.: Derivation of characteristic formulae. ENTCS 18 (1998)

    Google Scholar 

  27. Parrow, J., Sjödin, P.: Multiway synchronization verified with coupled simulation. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 518–533. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  28. Parrow, J., Sjödin, P.: The complete axiomatization of cs-congruence. In: Enjalbert, P., Mayr, E.W., Wagner, K.W. (eds.) STACS 1994. LNCS, vol. 775, pp. 557–568. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  29. Schnoebelen, P.: Verifying lossy channel systems has nonprimitive recursive complexity. IPL 83(5), 251–261 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sénizergues, G.: L(A)=L(B)? Decidability results from complete formal systems. TCS 251(1–2), 1–166 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Srba, J.: Roadmap of infinite results. EATCS Bulletin 78, 163–175 (2002)

    MathSciNet  MATH  Google Scholar 

  32. Steffen, B., Ingólfsdóttir, A.: Characteristic formulae for processes with divergence. I&C 110(1), 149–163 (1994)

    MathSciNet  MATH  Google Scholar 

  33. van Glabbeek, R.J.: The linear time—branching time spectrum II: The semantics of sequential systems with silent moves. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)

    Google Scholar 

  34. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation semantics. JACM 43(3), 555–600 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  35. Voorhoeve, M., Mauw, S.: Impossible futures and determinism. IPL 80(1), 51–58 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Walukiewicz, I.: Model checking CTL properties of pushdown systems. In: Kapoor, S., Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974, pp. 127–138. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  37. Walukiewicz, I.: Private communication (September 2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kučera, A., Schnoebelen, P. (2004). A General Approach to Comparing Infinite-State Systems with Their Finite-State Specifications. In: Gardner, P., Yoshida, N. (eds) CONCUR 2004 - Concurrency Theory. CONCUR 2004. Lecture Notes in Computer Science, vol 3170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28644-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28644-8_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22940-7

  • Online ISBN: 978-3-540-28644-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics