Nothing Special   »   [go: up one dir, main page]

Skip to main content

Online Scheduling with Bounded Migration

  • Conference paper
Automata, Languages and Programming (ICALP 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3142))

Included in the following conference series:

Abstract

Consider the classical online scheduling problem where jobs that arrive one by one are assigned to identical parallel machines with the objective of minimizing the makespan. We generalize this problem by allowing the current assignment to be changed whenever a new job arrives, subject to the constraint that the total size of moved jobs is bounded by β times the size of thearriving job.

Our main result is a linear time ‘online approximation scheme’, that is, a family of online algorithms with competitive ratio 1+ε and constant migration factor β(ε), for any fixed ε> 0. This result is of particular importance if considered in the context of sensitivity analysis: While a newly arriving job may force a complete change of the entire structure of an optimal schedule, only very limited ‘local’ changes suffice to preserve near-optimal solutions. We believe that this concept will find wide application in its own right. We also present simple deterministic online algorithms with migration factors β=2 and β=4/3, respectively. Their competitive ratio 3/2 beats the lower bound on the performance of any online algorithm in the classical setting without migration. We also present improved algorithms and similar results for closely related problems. In particular, there is a short discussion of corresponding results for the objective to maximize the minimum load of a machine. The latter problem has an application for configuring storage servers that was the original motivation for this work.

This work was partially supported by the Future and Emerging Technologies programme of the EU under contract number IST-1999-14186 (ALCOM-FT) and by the EU Thematic Network APPOL II, Approximation and Online Algorithms, IST-2001-30012.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albers, S.: Better bounds for online scheduling. SIAM Journal on Computing 29, 459–473 (1999)

    Article  MathSciNet  Google Scholar 

  2. Albers, S.: Online algorithms: a survey. Mathematical Programming 97, 3–26 (2003)

    MATH  MathSciNet  Google Scholar 

  3. Andrews, M., Goemans, M.X., Zhang, L.: Improved bounds for on-line load balancing. Algorithmica 23, 278–301 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Azar, Y., Epstein, L.: On-line machine covering. Journal of Algorithms 1, 67–77 (1998)

    MATH  MathSciNet  Google Scholar 

  5. Bartal, Y., Fiat, A., Karloff, H., Vohra, R.: New algorithms for an ancient scheduling problem. Journal of Computer and System Sciences 51, 359–366 (1995)

    Article  MathSciNet  Google Scholar 

  6. Chen, B., van Vliet, A., Woeginger, G.J.: Lower bounds for randomized online scheduling. Information Processing Letters 51, 219–222 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fleischer, R., Wahl, M.: Online scheduling revisited. Journal of Scheduling 3, 343–353 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Strong np-completeness results: Motivation, examples and implications. Journal of the ACM 25, 499–508 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  9. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell System Technical Journal 45, 1563–1581 (1966)

    Google Scholar 

  10. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems: Theoretical and practical results. Journal of the ACM 34, 144–162 (1987)

    Article  MathSciNet  Google Scholar 

  11. Karger, D.R., Phillips, S.J., Torng, E.: A better algorithm for an ancient scheduling problem. Journal of Algorithms 20, 400–430 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Rudin III., J.F.: Improved bounds for the on-line scheduling problem. PhD thesis, The University of Texas at Dallas (2001)

    Google Scholar 

  13. Sanders, P.: Algorithms for scalable storage servers. In: Van Emde Boas, P., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2004. LNCS, vol. 2932, pp. 82–101. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Sanders, P., Sivadasan, N., Skutella, M.: Online scheduling with bounded migration. Research Report MPI-I-2004-1-004, Max-Planck-Institut für Informatik, Saarbrücken, Germany (April 2004)

    Google Scholar 

  15. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons, Chichester (1986)

    MATH  Google Scholar 

  16. Sgall, J.: A lower bound for randomized on-line multiprocessor scheduling. Information Processing Letters 63(1), 51–55 (1997)

    Article  MathSciNet  Google Scholar 

  17. Sgall, J.: On-line scheduling — a survey. In: Fiat, A. (ed.) Dagstuhl Seminar 1996. LNCS, vol. 1442, pp. 196–231. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  18. Westbrook, J.: Load balancing for response time. J. Algorithms 35(1), 1–16 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sanders, P., Sivadasan, N., Skutella, M. (2004). Online Scheduling with Bounded Migration. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds) Automata, Languages and Programming. ICALP 2004. Lecture Notes in Computer Science, vol 3142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27836-8_92

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27836-8_92

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22849-3

  • Online ISBN: 978-3-540-27836-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics