Abstract
In this note we investigate the languages obtained by intersecting slender regular or context-free languages with the set of all primitive words over the common alphabet. We prove that these languages are also regular and, respectively, context-free. The statement does not hold anymore for either regular or context-free languages. Moreover, the set of all non-primitive words of a slender context-free language is still context-free. Some possible directions for further research are finally discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dömösi, P., Horvath, S., Ito, M.: Formal languages and primitive words. Publ. Math. Debrecen 42, 315–321 (1993)
Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proceedings of the American Mathematical Society 16, 109–114 (1965)
Harrison, M.: Introduction to Formal Language Theory. Addison-Wesley, Reading (1978)
Ilie, L.: On a conjecture about slender context-free languages. Theoret. Comput. Sci. 132, 427–434 (1994)
Imreh, B., Ito, M.: On some special classes of regular languages. In: Karhumäki, J., Maurer, H., P˘, G., Rozenberg, G. (eds.) Jewels are Forever, pp. 25–34. Springer, Heidelberg (1999)
Kunze, M., Shyr, H.J., Thierrin, G.: h-bounded and semidiscrete languages. Inform. Control 51, 147–187 (1981)
Latteux, M., Thierrin, G.: Semidiscrete context-free languages, Internat. J. Comput. Math. 14, 3–18 (1983)
Lothaire, M.: Combinatorics on Words. Addison-Wesley, Reading (1983)
Lyndon, R.C., Schützenberger, M.P.: The equation aM = bNcP in a free group. Michigan Math. J. 9, 289–298 (1962)
Păun, G., Salomaa, A.: Thin and slender languages. Discrete Appl. Math. 61, 257–270 (1995)
Raz, D.: Length considerations in context-free languages. Theoret. Comput. Sci. 183, 21–32 (1997)
Salomaa, A.: Formal Languages. Academic Press, London (1973)
Shallit, J.: Numeration systems, linear recurrences, and regular sets. Research Report CS-91-32 (July 1991), Computer Science Department, University of Waterloo, Canada
Shallit, J.: Numeration systems, linear recurrences, and regular sets (Extended abstract). In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 89–100. Springer, Heidelberg (1992)
Shallit, J.: Numeration systems, linear recurrences, and regular sets. Information and Computation 113, 331–347 (1994)
Shyr, H.J.: Free Monoids and Languages. Ho Min Book Company, Taiwan (1991)
Shyr, H.J., Thierrin, G.: Disjunctive languages and codes. In: Karpinski, M. (ed.) FCT 1977. LNCS, vol. 56, pp. 171–176. Springer, Heidelberg (1977)
Shyr, H.J., Yu, S.S.: Non-primitive words in the language p + q + . Soochow J. Math. 20, 535–546 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Dömösi, P., Martín-Vide, C., Mitrana, V. (2004). Remarks on Sublanguages Consisting of Primitive Words of Slender Regular and Context-Free Languages. In: Karhumäki, J., Maurer, H., Păun, G., Rozenberg, G. (eds) Theory Is Forever. Lecture Notes in Computer Science, vol 3113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27812-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-540-27812-2_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22393-1
Online ISBN: 978-3-540-27812-2
eBook Packages: Springer Book Archive