Nothing Special   »   [go: up one dir, main page]

Skip to main content

Remarks on Sublanguages Consisting of Primitive Words of Slender Regular and Context-Free Languages

  • Chapter
Theory Is Forever

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3113))

Abstract

In this note we investigate the languages obtained by intersecting slender regular or context-free languages with the set of all primitive words over the common alphabet. We prove that these languages are also regular and, respectively, context-free. The statement does not hold anymore for either regular or context-free languages. Moreover, the set of all non-primitive words of a slender context-free language is still context-free. Some possible directions for further research are finally discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dömösi, P., Horvath, S., Ito, M.: Formal languages and primitive words. Publ. Math. Debrecen 42, 315–321 (1993)

    MATH  MathSciNet  Google Scholar 

  2. Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proceedings of the American Mathematical Society 16, 109–114 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  3. Harrison, M.: Introduction to Formal Language Theory. Addison-Wesley, Reading (1978)

    MATH  Google Scholar 

  4. Ilie, L.: On a conjecture about slender context-free languages. Theoret. Comput. Sci. 132, 427–434 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Imreh, B., Ito, M.: On some special classes of regular languages. In: Karhumäki, J., Maurer, H., P˘, G., Rozenberg, G. (eds.) Jewels are Forever, pp. 25–34. Springer, Heidelberg (1999)

    Google Scholar 

  6. Kunze, M., Shyr, H.J., Thierrin, G.: h-bounded and semidiscrete languages. Inform. Control 51, 147–187 (1981)

    Article  MathSciNet  Google Scholar 

  7. Latteux, M., Thierrin, G.: Semidiscrete context-free languages, Internat. J. Comput. Math. 14, 3–18 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lothaire, M.: Combinatorics on Words. Addison-Wesley, Reading (1983)

    MATH  Google Scholar 

  9. Lyndon, R.C., Schützenberger, M.P.: The equation aM = bNcP in a free group. Michigan Math. J. 9, 289–298 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  10. Păun, G., Salomaa, A.: Thin and slender languages. Discrete Appl. Math. 61, 257–270 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Raz, D.: Length considerations in context-free languages. Theoret. Comput. Sci. 183, 21–32 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Salomaa, A.: Formal Languages. Academic Press, London (1973)

    MATH  Google Scholar 

  13. Shallit, J.: Numeration systems, linear recurrences, and regular sets. Research Report CS-91-32 (July 1991), Computer Science Department, University of Waterloo, Canada

    Google Scholar 

  14. Shallit, J.: Numeration systems, linear recurrences, and regular sets (Extended abstract). In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 89–100. Springer, Heidelberg (1992)

    Google Scholar 

  15. Shallit, J.: Numeration systems, linear recurrences, and regular sets. Information and Computation 113, 331–347 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Shyr, H.J.: Free Monoids and Languages. Ho Min Book Company, Taiwan (1991)

    MATH  Google Scholar 

  17. Shyr, H.J., Thierrin, G.: Disjunctive languages and codes. In: Karpinski, M. (ed.) FCT 1977. LNCS, vol. 56, pp. 171–176. Springer, Heidelberg (1977)

    Google Scholar 

  18. Shyr, H.J., Yu, S.S.: Non-primitive words in the language p + q + . Soochow J. Math. 20, 535–546 (1994)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dömösi, P., Martín-Vide, C., Mitrana, V. (2004). Remarks on Sublanguages Consisting of Primitive Words of Slender Regular and Context-Free Languages. In: Karhumäki, J., Maurer, H., Păun, G., Rozenberg, G. (eds) Theory Is Forever. Lecture Notes in Computer Science, vol 3113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27812-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27812-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22393-1

  • Online ISBN: 978-3-540-27812-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics