Nothing Special   »   [go: up one dir, main page]

Skip to main content

Collective Tree Spanners of Graphs

  • Conference paper
Algorithm Theory - SWAT 2004 (SWAT 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3111))

Included in the following conference series:

  • 1438 Accesses

Abstract

In this paper we introduce a new notion of collective tree spanners. We say that a graph G=(V,E) admits a system of μ collective additive tree r -spanners if there is a system \(\mathcal{T}(G)\) of at most μ spanning trees of G such that for any two vertices x,y of G a spanning tree \(T \in \mathcal{T}(G)\) exists such that d T (x,y)≤ d G (x,y)+r. Among other results, we show that any chordal graph, chordal bipartite graph or cocomparability graph admits a system of at most log2 n collective additive tree 2–spanners and any c-chordal graph admits a system of at most log2 n collective additive tree (2\(\lfloor c/2\rfloor\))–spanners. Towards establishing these results, we present a general property for graphs, called (α,r)–decomposition, and show that any (α,r)–decomposable graph G with n vertices admits a system of at most log1/α n collective additive tree 2r–spanners. We discuss also an application of the collective tree spanners to the problem of designing compact and efficient routing schemes in graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bartal, Y.: On approximating arbitrary metrices by tree metrics. In: Proceedings of the 13th Annual ACM Symposium on Theory of Computing, pp. 161–168 (1998)

    Google Scholar 

  2. Berge, C.: Hypergraphs. North-Holland, Amsterdam (1989)

    MATH  Google Scholar 

  3. Brandstädt, F.F., Dragan, H.-O.: Tree Spanners on Chordal Graphs: Complexity, Algorithms, Open Problems. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 163–174. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Brandstädt, F.F., Dragan, H.-O., Le, V.B.: Tree spanners for bipartite graphs and probe interval graphs. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 106–118. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Brandstädt, V.B., Le, J.: Graph Classes: A Survey. SIAM, Philadelphia (1999)

    Book  MATH  Google Scholar 

  6. Cai, L., Corneil, D.G.: Tree spanners. SIAM J. Disc. Math., 8, 359–387 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Charikar, M., Chekuri, C., Goel, A., Guha, S., Plotkin, S.: Approximating a Finite Metric by a Small Number of Tree Metrics. In: Proceedings of the 39th Annual Symposium on Foundations of Computer Science, pp. 379–388 (1998)

    Google Scholar 

  8. Chepoi, V.D., Dragan, F.F., Yan, C.: Additive Spanners for k-Chordal Graphs. In: Petreschi, R., Persiano, G., Silvestri, R. (eds.) CIAC 2003. LNCS, vol. 2653, pp. 201–212. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Dragan, F.F., Lomonosov, I.: Compact and efficient routing schemes for special graph classes (2004) (in preparation)

    Google Scholar 

  10. Dragan, F.F., Yan, C.: Collective tree spanners of homogeneously orderable graphs (2004) (in preparation)

    Google Scholar 

  11. Dragan, F.F., Yan, C., Corneil, D.G.: Collective tree spanners and routing in AT-free related graphs (2004) (in preparation)

    Google Scholar 

  12. Dourisboure, Y., Gavoille, C.: Improved Compact Routing Scheme for Chordal Graphs. In: Malkhi, D. (ed.) DISC 2002. LNCS, vol. 2508, pp. 252–264. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Dourisboure, Y., Gavoille, C.: Tree-length of graphs (2003)(manuscript)

    Google Scholar 

  14. Fraigniaud, P., Gavoille, C.: Routing in Trees. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 757–772. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Gavoille, C., Gengler, M.: Space-efficiency of routing schemes of stretch factor three. J. Parallel and Distr. Comput. 61, 679–687 (2001)

    Article  MATH  Google Scholar 

  16. Katz, M., Katz, N.A., Peleg, D.: Distance labeling schemes for well-separated graph classes. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 516–528. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  17. Liestman, A.L., Shermer, T.: Additive graph spanners. Networks 23, 343–364 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. In: SIAM Monographs on Discrete Math. Appl., SIAM, Philadelphia (2000)

    Google Scholar 

  19. Peleg, D., Schäffer, A.A.: Graph Spanners. J. Graph Theory 13, 99–116 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  20. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. In: Proc. 6th ACM Symposium on Principles of Distributed Computing, Vancouver, pp. 77–85 (1987)

    Google Scholar 

  21. Prisner, E., Kratsch, D., Le, H.-O., Müller, H., Wagner, D.: Additive tree spanners. SIAM Journal on Discrete Mathematics 17, 332–340 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Thorup, M., Zwick, U.: Compact routing schemes. In: Thorup, M., Zwick, U. (eds.) Proc. 13th Ann. ACM Symp. on Par. Alg. and Arch (SPAA 2001), pp. 1–10. ACM Press, New York (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dragan, F.F., Yan, C., Lomonosov, I. (2004). Collective Tree Spanners of Graphs. In: Hagerup, T., Katajainen, J. (eds) Algorithm Theory - SWAT 2004. SWAT 2004. Lecture Notes in Computer Science, vol 3111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27810-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27810-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22339-9

  • Online ISBN: 978-3-540-27810-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics