Nothing Special   »   [go: up one dir, main page]

Skip to main content

Learning Classes of Probabilistic Automata

  • Conference paper
Learning Theory (COLT 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3120))

Included in the following conference series:

Abstract

Probabilistic finite automata (PFA) model stochastic languages, i.e. probability distributions over strings. Inferring PFA from stochastic data is an open field of research. We show that PFA are identifiable in the limit with probability one. Multiplicity automata (MA) is another device to represent stochastic languages. We show that a MA may generate a stochastic language that cannot be generated by a PFA, but we show also that it is undecidable whether a MA generates a stochastic language. Finally, we propose a learning algorithm for a subclass of PFA, called PRFA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Paz, A.: Introduction to probabilistic automata. Academic Press, London (1971)

    MATH  Google Scholar 

  2. Abe, N., Warmuth, M.: On the computational complexity of approximating distributions by probabilistic automata. Machine Learning 9, 205–260 (1992)

    MATH  Google Scholar 

  3. Dempster, A., Laird, N.M., Rubin, D.B.: Maximum likelyhood from incomplete data via the em algorithm. Journal of the Royal Statistical Society 39, 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  4. Baldi, P., Brunak, S.: Bioinformatics: The Machine Learning Approach. MIT Press, Cambridge (1998)

    Google Scholar 

  5. Freitag, D., McCallum, A.: Information extraction with HMM structures learned by stochastic optimization. In: AAAI/IAAI, pp. 584–589 (2000)

    Google Scholar 

  6. Gold, E.: Language identification in the limit. Inform. Control 10, 447–474 (1967)

    Article  MATH  Google Scholar 

  7. Angluin, D.: Identifying languages from stochastic examples. Technical Report YALEU/DCS/RR-614, Yale University, New Haven, CT (1988)

    Google Scholar 

  8. Carrasco, R., Oncina, J.: Learning stochastic regular grammars by means of a state merging method. In: ICGI, pp. 139–152. Springer, Heidelberg (1994)

    Google Scholar 

  9. Carrasco, R.C., Oncina, J.: Learning deterministic regular grammars from stochastic samples in polynomial time. RAIRO 33, 1–20 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. de la Higuera, C., Thollard, F.: Identification in the limit with probability one of stochastic deterministic finite automata. In: Oliveira, A.L. (ed.) ICGI 2000. LNCS (LNAI), vol. 1891, pp. 141–156. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Bergadano, F., Varricchio, S.: Learning behaviors of automata from multiplicity and equivalence queries. In: Italian Conf. on Algorithms and Complexity (1994)

    Google Scholar 

  12. Beimel, A., Bergadano, F., Bshouty, N.H., Kushilevitz, E., Varricchio, S.: On the applications of multiplicity automata in learning. In: IEEE Symposium on Foundations of Computer Science, pp. 349–358 (1996)

    Google Scholar 

  13. Beimel, A., Bergadano, F., Bshouty, N.H., Kushilevitz, E., Varricchio, S.: Learning functions represented as multiplicity automata. Journal of the ACM 47, 506–530 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Thollard, F., Dupont, P., de la Higuera, C.: In: Proc. 17th ICML in title

    Google Scholar 

  15. Kearns, M., Mansour, Y., Ron, D., Rubinfeld, R., Schapire, R.E., Sellie, L.: On the learnability of discrete distributions, 273–282 (1994)

    Google Scholar 

  16. Esposito, Y., Lemay, A., Denis, F., Dupont, P.: Learning probabilistic residual finite state automata. In: Adriaans, P.W., Fernau, H., van Zaanen, M. (eds.) ICGI 2002. LNCS (LNAI), vol. 2484, p. 77. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Denis, F., Esposito, Y.: Residual languages and probabilistic automata. In: ICALP 2003, Springer, Heidelberg (2003)

    Google Scholar 

  18. Angluin, D.: Queries and concept learning. Machine Learning 2, 319–342 (1988)

    Google Scholar 

  19. Vapnik, V.N.: Statistical Learning Theory. John Wiley, Chichester (1998)

    MATH  Google Scholar 

  20. Lugosi, G.: Pattern classification and learning theory. In: Principles of Nonparametric Learning., pp. 1–56. Springer, Heidelberg (2002)

    Google Scholar 

  21. Hardy, G.H., Wright, E.M.: An introduction to the theory of numbers. Oxford University Press, Oxford (1979)

    MATH  Google Scholar 

  22. Blondel, V.D., Canterini, V.: Undecidable problems for probabilistic automata of fixed dimension. Theory of Computing Systems 36, 231–245 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Denis, F., Esposito, Y. (2004). Learning Classes of Probabilistic Automata. In: Shawe-Taylor, J., Singer, Y. (eds) Learning Theory. COLT 2004. Lecture Notes in Computer Science(), vol 3120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27819-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27819-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22282-8

  • Online ISBN: 978-3-540-27819-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics