Abstract
During an interactive image retrieval process with relevance feedback, kernel-based or boosted learning algorithms can provide superior nonlinear modeling capability. In this paper, we discuss such nonlinear extensions for biased discriminants, or BiasMap [1, 2]. Kernel partial alignment is proposed as the criterion for kernel selection. The associated analysis also provides a gauge on relative class scatters, which can guide an asymmetric learner, such as BiasMap, toward better class modeling. We also propose two boosted versions of BiasMap. Unlike existing approach that boosts feature components or vectors to form a composite classifier, our scheme boosts linear BiasMap toward a nonlinear ranker which is more suited for small-sample learning during interactive image retrieval. Experiments on heterogeneous image database retrieval as well as small sample face retrieval are used for performance evaluations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zhou, X.S., Huang, T.S.: Small sample learning during multimedia retrieval using biasmap. In: Proc. IEEE CVPR, Hawaii, vol. I, pp. 11–17 (2001)
Zhou, X.S., Rui, Y., Huang, T.S.: Exploration of Visual Data. Kluwer Academic Publishers, Dordrecht (2003)
Su, Z., Li, S., Zhang, H.: Extraction of feature subspaces for content-based retrieval using relevance feedback. In: ACM Multimedia, pp. 98–106 (2001)
Tieu, K., Viola, P.: Boosting image retrieval (In: Proc. IEEE CVPR, South Carolina)
Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. In: Proc. Int’l Conf. Machine Learning, pp. 999–1006 (2000)
Vasconcelos, N., Kunt, M.: Content-based retrieval from image databases: Current solutions and future directions. In: Proc. IEEE ICIP, Greece (2001)
Wu, Y., Tian, Q., Huang, T.S.: Discriminant-EM algorithm with application to image retrieval. In: Proc. IEEE CVPR, South Carolina, pp. 222–227 (2000)
Dong, A., Bhanu, B.: Active concept learning for image retrieval in dynamic databases. In: Proc. ICCV (2003)
Worring, M., Smeulders, A., Santini, S.: Interaction in content-based image retrieval: a stateof- the-art review. In: Int’l Conf. on Visual Info. Sys., Lyon, France (2000)
Hong, P., Tian, Q., Huang, T.S.: Incorporate support vector machines to content-based image retrieval with relevant feedback. In: Proc. IEEE ICIP, Vancouver, Canada (2000)
Chen, Y., Zhou, X.S., Huang, T.S.: One-class svm for learning in image retrieval. In: Proc. IEEE ICIP, Greece (2001)
Tong, S., Chang, E.: Support vector machine active learning for image retrieval. In: Proc. ACM Multimedia, Ottawa, Canada (2001)
Zhang, L., Lin, F., Zhang, B.: Support vector machine learning for image retrieval. In: Proc. IEEE ICIP, Greece (2001)
Heisterkamp, D., Peng, J., Dai, H.: An adaptive quasiconformal kernel metric for image retrieval. In: Proc. IEEE CVPR, Hawaii, pp. 388–393 (2001)
Howe, N.R.: In: Bakker, E.M., Lew, M., Huang, T.S., Sebe, N., Zhou, X.S. (eds.) CIVR 2003. LNCS, vol. 2728, Springer, Heidelberg (2003)
Guo, G.D., Jain, A.K., Ma, W.Y., Zhang, H.J.: Learning similarity measure for natural image retrieval with relevance feedback. IEEE Trans. Neural Networks 13, 811–820 (2002)
Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for combining preferences. In: Int’l Conf. Machine Learning, pp. 170–178 (1998)
Dipillo, P.: Biased discriminant analysis: Evaluation of the optimum probability of classification. Comun. Statist.-Theor. Meth. 8, 1447–1457 (1979)
Vapnik, V.: The nature of statistical learning theory. Springer, NewYork (1995)
Baudat, G., Anouar, F.: Generalized discriminant analysis using a kernel approach. Neural Computation 12, 2385–2404 (2000)
Mika, S., Rätsch, G., Müller, K.R.: A mathematical programming approach to the kernel fisher algorithm. In: NIPS-13, pp. 591–597 (2001)
Cristianini, N., Shawe-Taylor, J., Elisseeff, A., Kandola, J.: On kernel-target alignment. In: NIPS (2001)
Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proc. Int’l Conf. on Machine Learning, pp. 148–156 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhou, X.S., Garg, A., Huang, T.S. (2004). A Discussion of Nonlinear Variants of Biased Discriminants for Interactive Image Retrieval. In: Enser, P., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A.F., Smeulders, A.W.M. (eds) Image and Video Retrieval. CIVR 2004. Lecture Notes in Computer Science, vol 3115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27814-6_43
Download citation
DOI: https://doi.org/10.1007/978-3-540-27814-6_43
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22539-3
Online ISBN: 978-3-540-27814-6
eBook Packages: Springer Book Archive