Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Discussion of Nonlinear Variants of Biased Discriminants for Interactive Image Retrieval

  • Conference paper
Image and Video Retrieval (CIVR 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3115))

Included in the following conference series:

Abstract

During an interactive image retrieval process with relevance feedback, kernel-based or boosted learning algorithms can provide superior nonlinear modeling capability. In this paper, we discuss such nonlinear extensions for biased discriminants, or BiasMap [1, 2]. Kernel partial alignment is proposed as the criterion for kernel selection. The associated analysis also provides a gauge on relative class scatters, which can guide an asymmetric learner, such as BiasMap, toward better class modeling. We also propose two boosted versions of BiasMap. Unlike existing approach that boosts feature components or vectors to form a composite classifier, our scheme boosts linear BiasMap toward a nonlinear ranker which is more suited for small-sample learning during interactive image retrieval. Experiments on heterogeneous image database retrieval as well as small sample face retrieval are used for performance evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhou, X.S., Huang, T.S.: Small sample learning during multimedia retrieval using biasmap. In: Proc. IEEE CVPR, Hawaii, vol. I, pp. 11–17 (2001)

    Google Scholar 

  2. Zhou, X.S., Rui, Y., Huang, T.S.: Exploration of Visual Data. Kluwer Academic Publishers, Dordrecht (2003)

    MATH  Google Scholar 

  3. Su, Z., Li, S., Zhang, H.: Extraction of feature subspaces for content-based retrieval using relevance feedback. In: ACM Multimedia, pp. 98–106 (2001)

    Google Scholar 

  4. Tieu, K., Viola, P.: Boosting image retrieval (In: Proc. IEEE CVPR, South Carolina)

    Google Scholar 

  5. Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. In: Proc. Int’l Conf. Machine Learning, pp. 999–1006 (2000)

    Google Scholar 

  6. Vasconcelos, N., Kunt, M.: Content-based retrieval from image databases: Current solutions and future directions. In: Proc. IEEE ICIP, Greece (2001)

    Google Scholar 

  7. Wu, Y., Tian, Q., Huang, T.S.: Discriminant-EM algorithm with application to image retrieval. In: Proc. IEEE CVPR, South Carolina, pp. 222–227 (2000)

    Google Scholar 

  8. Dong, A., Bhanu, B.: Active concept learning for image retrieval in dynamic databases. In: Proc. ICCV (2003)

    Google Scholar 

  9. Worring, M., Smeulders, A., Santini, S.: Interaction in content-based image retrieval: a stateof- the-art review. In: Int’l Conf. on Visual Info. Sys., Lyon, France (2000)

    Google Scholar 

  10. Hong, P., Tian, Q., Huang, T.S.: Incorporate support vector machines to content-based image retrieval with relevant feedback. In: Proc. IEEE ICIP, Vancouver, Canada (2000)

    Google Scholar 

  11. Chen, Y., Zhou, X.S., Huang, T.S.: One-class svm for learning in image retrieval. In: Proc. IEEE ICIP, Greece (2001)

    Google Scholar 

  12. Tong, S., Chang, E.: Support vector machine active learning for image retrieval. In: Proc. ACM Multimedia, Ottawa, Canada (2001)

    Google Scholar 

  13. Zhang, L., Lin, F., Zhang, B.: Support vector machine learning for image retrieval. In: Proc. IEEE ICIP, Greece (2001)

    Google Scholar 

  14. Heisterkamp, D., Peng, J., Dai, H.: An adaptive quasiconformal kernel metric for image retrieval. In: Proc. IEEE CVPR, Hawaii, pp. 388–393 (2001)

    Google Scholar 

  15. Howe, N.R.: In: Bakker, E.M., Lew, M., Huang, T.S., Sebe, N., Zhou, X.S. (eds.) CIVR 2003. LNCS, vol. 2728, Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Guo, G.D., Jain, A.K., Ma, W.Y., Zhang, H.J.: Learning similarity measure for natural image retrieval with relevance feedback. IEEE Trans. Neural Networks 13, 811–820 (2002)

    Article  Google Scholar 

  17. Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for combining preferences. In: Int’l Conf. Machine Learning, pp. 170–178 (1998)

    Google Scholar 

  18. Dipillo, P.: Biased discriminant analysis: Evaluation of the optimum probability of classification. Comun. Statist.-Theor. Meth. 8, 1447–1457 (1979)

    Article  MathSciNet  Google Scholar 

  19. Vapnik, V.: The nature of statistical learning theory. Springer, NewYork (1995)

    MATH  Google Scholar 

  20. Baudat, G., Anouar, F.: Generalized discriminant analysis using a kernel approach. Neural Computation 12, 2385–2404 (2000)

    Article  Google Scholar 

  21. Mika, S., Rätsch, G., Müller, K.R.: A mathematical programming approach to the kernel fisher algorithm. In: NIPS-13, pp. 591–597 (2001)

    Google Scholar 

  22. Cristianini, N., Shawe-Taylor, J., Elisseeff, A., Kandola, J.: On kernel-target alignment. In: NIPS (2001)

    Google Scholar 

  23. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proc. Int’l Conf. on Machine Learning, pp. 148–156 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhou, X.S., Garg, A., Huang, T.S. (2004). A Discussion of Nonlinear Variants of Biased Discriminants for Interactive Image Retrieval. In: Enser, P., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A.F., Smeulders, A.W.M. (eds) Image and Video Retrieval. CIVR 2004. Lecture Notes in Computer Science, vol 3115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27814-6_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27814-6_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22539-3

  • Online ISBN: 978-3-540-27814-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics