Abstract
XL was first introduced to solve determined or overdetermined systems of equations over a finite field as an “algebraic attack” against multivariate cryptosystems. There has been a steady stream of announcements of cryptanalysis of primitives by such attacks, including stream ciphers (e.g. Toyocrypt), PKC’s, and more controversially block ciphers (AES/Rijndael and Serpent).
Prior discussions of XL are usually heavy in simulations, which are of course valuable but we would like more attention to theory, because theory and simulations must validate each other, and there are some nuances not easily discerned from simulations. More effort was made in this direction of recent, but much of it was restricted to a large base field of size q, which is usually equal to 2k. By conducting an analysis of XL variants in general, we try to derive rigorous “termination conditions”, minimal degree requirements for reliable, successful operation of XL and its relatives, hence better security estimates. Our work is applicable to small q, in particular the significant q=2 case.
Armed with this analysis, we reexamine previously announced results. We conclude that XL and variants represent a theoretical advance that is especially significant over small fields (in particular over GF(2)). However, its applicability and efficacy are occasionally overestimated slightly. We discuss possible future research directions. Much remains to be done.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bardet, M., Faugère, J.-C., Salvy, B.: Complexity of Gröbner Basis Computations for Regular Overdetermined Systems, INRIA RR. No. 5049 and private communication
Bunch, J.R., Hopcroft, J.E.: Triangular Factorizations and Inversion by Fast Matrix Multiplication. Math. Computations 24, 231–236 (1974)
Bernstein, D.: Matrix Inversion Made Difficult, preprint, stated to be superseded by a yet unpublished version, available at http://cr.yp.to
Courtois, N.: The Security of Hidden Field Equations (HFE). In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 266–281. Springer, Heidelberg (2001)
Courtois, N.: Higher-Order Correlation Attacks, XLAlgorithm and Cryptanalysis ofToyocrypt. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 182–199. Springer, Heidelberg (2003)
Courtois, N.: Fast Algebraic Attacks on Stream Ciphers with Linear Feedback. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Heidelberg (2003)
Courtois, N.: Algebraic Attacks over GF(2k), Cryptanalysis of HFE Challenge 2 and SFLASHv2. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 201–217. Springer, Heidelberg (2004)
Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equations. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)
Courtois, N., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Systems of Equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 267–287. Springer, Heidelberg (2002)
Courtois, N., Patarin, J.: About the XL Algorithm over GF(2). In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 141–157. Springer, Heidelberg (2003)
Duff, S., Erismann, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Oxford Science Publications (1986)
Faugère, J.-C.: A New Efficient Algorithm for Computing Gröbner Bases without Reduction to Zero (F5). In: Proceedings of ISSAC 2002, pp. 75–83. ACM Press, New York (2002)
Faugère, J.-C., Joux, A.: Algebraic Cryptanalysis of Hidden Field Equations (HFE) Cryptosystems Using Gröbner Bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 44–60. Springer, Heidelberg (2003)
Garey, M., Johnson, D.: Computers and Intractability, A Guide to the Theory of NPcompleteness, p. 251 (1979)
Kipnis, A., Shamir, A.: Cryptanalysis of the HFE Public Key Cryptosystem by Relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30. Springer, Heidelberg (1999)
Moh, T.: On The Method of XL and Its Inefficiency Against TTM, available at http://eprint.iacr.org/2001/047
Murphy, S., Robshaw, M.: Essential Algebraic Structures Within the AES. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 1–16. Springer, Heidelberg (2002)
Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New Families of Asymmetric Algorithms. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)
Stanley, R.: Enumerative Combinatorics, vol. 1, second printing 1996; vol. 2 in 1999. Both published by Cambridge University Press, Cambridge.
Strassen, V.: Gaussian Elimination is not Optimal. Numer. Math. 13, 354–356 (1969)
Yang, B.-Y., Chen, J.-M.: All in the XL Family: Theory and Practice (preprint)
Yang, B.-Y., Chen, J.-M.: Asymptotic Behavior for XL and Friends (preprint)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yang, BY., Chen, JM. (2004). Theoretical Analysis of XL over Small Fields. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds) Information Security and Privacy. ACISP 2004. Lecture Notes in Computer Science, vol 3108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27800-9_24
Download citation
DOI: https://doi.org/10.1007/978-3-540-27800-9_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22379-5
Online ISBN: 978-3-540-27800-9
eBook Packages: Springer Book Archive