Abstract
We present a hierarchical scheme for synthesis of concept approximations based on given data and domain knowledge. We also propose a solution, founded on rough set theory, to the problem of constructing the approximation of higher level concepts by composing the approximation of lower level concepts. We examine the effectiveness of the layered learning approach by comparing it with the standard learning approach. Experiments are carried out on artificial data sets generated by a road traffic simulator.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aha, D.W.: The omnipresence of case-based reasoning in science and application. Knowledge-Based Systems 11(5-6), 261–273 (1998)
Barwise, J., Seligman, J. (eds.): Information Flow: The Logic of Distributed Systems. Tracts in Theoretical Computer Science, vol. 44. Cambridge University Press, Cambridge (1997)
Bazan, J.G.: A comparison of dynamic and non-dynamic rough set methods for extracting laws from decision tables. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 1: Methodology and Applications, pp. 321–365. Physica-Verlag, Heidelberg (1998)
Bazan, J.G., Szczuka, M.: RSES and RSESlib - a collection of tools for rough set computations. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 106–113. Springer, Heidelberg (2000)
Bazan, J., Nguyen, H.S., Skowron, A., Szczuka, M.: A view on rough set concept approximation. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 181–188. Springer, Heidelberg (2003)
Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Transactions on Information Theory 13, 21–27 (1967)
Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, Heidelberg (2001)
Grzymala-Busse, J.: A new version of the rule induction system lers. Fundamenta Informaticae 31(1), 27–39 (1997)
Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets: a tutorial. In: Pal, S.K., Skowron, A. (eds.) Rough Fuzzy Hybridization: A New Trend in Decision-Making, pp. 3–98. Springer, Singapore (1999)
Kloesgen, W., Zytkow, J. (eds.): Handbook of Knowledge Discovery and Data Mining. Oxford University Press, Oxford (2002)
Mitchell, T.: Machine Learning. Mc Graw Hill, New York (1998)
Pal, S.K., Polkowski, L., Skowron, A. (eds.): Rough-Neural Computing: Techniques for Computing with Words, Cognitive Technologies. Springer, Heidelberg (2003)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. In: System Theory, Knowledge Engineering and Problem Solving, vol. 9. Kluwer Academic Publishers, Dordrecht (1991)
Poggio, T., Smale, S.: The mathematics of learning: Dealing with data. Notices of the AMS 50, 537–544 (2003)
Polkowski, L., Skowron, A.: Rough mereology: A new paradigm for approximate reasoning. International Journal of Approximate Reasoning 15, 333–365 (1996)
Polkowski, L., Skowron, A.: Rough mereological calculi of granules: A rough set approach to computation. Computational Intelligence 17, 472–492 (2001)
Polkowski, L., Skowron, A.: Towards adaptive calculus of granules. In: Zadeh, L.A., Kacprzyk, J. (eds.) Computing with Words in Information/Intelligent Systems, pp. 201–227. Physica-Verlag, Heidelberg (1999)
Skowron, A., Stepaniuk, J.: Information granules and rough-neural computing. In: [12], pp. 43–84
Skowron, A., Stepaniuk, J.: Information granules: Towards foundations of granular computing. International Journal of Intelligent Systems 16, 57–86 (2001)
Skowron, A., Stepaniuk, J.: Information granule decomposition. Fundamenta In-formaticae 47(3-4), 337–350 (2001)
Skowron, A.: Approximate reasoning by agents in distributed environments. In: Zhong, N., Liu, J., Ohsuga, S., Bradshaw, J. (eds.) Intelligent Agent Technology Research and Development: Proceedings of the 2nd Asia-Pacific Conference on Intelligent Agent Technology IAT01, Maebashi, Japan, October 23-26, pp. 28–39. World Scientific, Singapore (2001)
Skowron, A.: Approximation spaces in rough neurocomputing. In: Inuiguchi, M., Tsumoto, S., Hirano, S. (eds.) Rough Set Theory and Granular Computing. Studies in Fuzziness and Soft Computing, vol. 125, pp. 13–22. Springer, Heidelberg (2003)
Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems. In: Slowinski, R. (ed.) Intelligent Decision Support - Handbook of Applications and Advances of the Rough Sets Theory. D: System Theory, Knowledge Engineering and Problem Solving, vol. 11, pp. 331–362. Kluwer Academic Publishers, Dordrecht (1992)
Skowron, A., Szczuka, M.: Approximate reasoning schemes: Classifiers for computing with words. In: Proceedings of SMPS 2002, Advances in Soft Computing, pp. 338–345. Springer, Heidelberg (2002)
Stone, P.: Layered Learning in Multi-Agent Systems: A Winning Approach toRobotic Soccer. The MIT Press, Cambridge (2000)
Wróblewski, J.: Covering with reducts - a fast algorithm for rule generation. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 402–407. Springer, Heidelberg (1998)
Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Transactions on Fuzzy Systems 4, 103–111 (1996)
Zadeh, L.A.: A new direction in AI: Toward a computational theory of perceptions. AI Magazine 22, 73–84 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nguyen, S.H., Bazan, J., Skowron, A., Nguyen, H.S. (2004). Layered Learning for Concept Synthesis. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B., Świniarski, R.W., Szczuka, M.S. (eds) Transactions on Rough Sets I. Lecture Notes in Computer Science, vol 3100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27794-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-540-27794-1_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22374-0
Online ISBN: 978-3-540-27794-1
eBook Packages: Springer Book Archive