Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fuzzy Rough Sets Based on Residuated Lattices

  • Conference paper
Transactions on Rough Sets II

Part of the book series: Lecture Notes in Computer Science ((TRS,volume 3135))

Abstract

Rough sets were developed by Pawlak as a formal tool for representing and processing information in data tables. Fuzzy generalizations of rough sets were introduced by Dubois and Prade. In this paper, we consider L–fuzzy rough sets as a further generalization of the notion of rough sets. Specifically, we take a residuated lattice L as a basic structure. L–fuzzy rough sets are defined using the product operator and its residuum provided by the residuated lattice L. Depending on classes of binary fuzzy relations, we define several classes of L–fuzzy rough sets and investigate properties of these classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dilworth, R.P., Ward, N.: Residuated lattices. Trans. Amer. Math. Soc. 45, 335–354 (1939)

    Article  MATH  MathSciNet  Google Scholar 

  2. Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. Int. J. of General Systems 17(2-3), 191–209 (1990)

    Article  MATH  Google Scholar 

  3. Dubois, D., Prade, H.: Putting fuzzy sets and rough sets together. In: Slowiński, R. (ed.) Intelligent Decision Support: Handbook of Applications and Advances of Rough Sets Theory, pp. 203–232. Kluwer, Dordrecht (1992)

    Google Scholar 

  4. Esteva, F., Godo, L.: Monoidal t–norm based logic: towards a logic for left– continuous t–norms. Fuzzy Sets and Systems 124, 271–288 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Goguen, J.A.: L–fuzzy sets. Journal of Mathematical Analysis and Applications 18, 145–174 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hajek, P.: Metamathematics of Fuzzy Logics. Kluwer, Dordrecht (1998)

    Google Scholar 

  7. Nakamura, A.: Fuzzy rough sets. Notes on Multiple–Valued Logic in Japan 9(8), 1–8 (1988)

    Google Scholar 

  8. Nanda, S., Majumdar, S.: Fuzzy rough sets. Fuzzy Sets and Systems 45, 157–160 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Orlowska, E. (ed.): Incomplete Information: Rough Set Analysis. Springer, Heidelberg (1998)

    Google Scholar 

  10. Pal, S.K., Skowron, A.: Rough Fuzzy Hybridization: A New Trend in Decision Making. Springer, Singapore (1999)

    MATH  Google Scholar 

  11. Pawlak, Z.: Rough sets. Journal of Computer and Information Science 11(5), 341–356 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  12. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer, Dordrecht (1991)

    MATH  Google Scholar 

  13. Polkowski, L., Skowron, A.: Rough Sets and Knowledge Discovery, vol. 1,2. Physica, Heidelberg (1998)

    Google Scholar 

  14. Radzikowska, A.M., Kerre, E.E.: Fuzzy rough sets revisited. In: Proceedings EUFIT 1999, Aachen (1999) (published on CD)

    Google Scholar 

  15. Radzikowska, A.M., Kerre, E.E.: A comparative study of fuzzy rough sets. Fuzzy Sets and Systems 126, 137–155 (2001)

    Article  MathSciNet  Google Scholar 

  16. Radzikowska, A.M., Kerre, E.E.: A general calculus of fuzzy rough sets (submitted)

    Google Scholar 

  17. Rasiowa, H., Sikorski, R.: The Mathematics of Metamathematics. PWN – Polish Scientific Publishers (1970)

    Google Scholar 

  18. Slowiński, R. (ed.): Intelligent Decision Support: Handbook of Applications and Advances of Rough Sets Theory. Kluwer, Dordrecht (1992)

    MATH  Google Scholar 

  19. Thiele, H.: On the definition of modal operators in fuzzy logic. In: Proceedings ISMVL 1993, Sacramento, California, pp. 62–67 (1993)

    Google Scholar 

  20. Thiele, H.: Fuzzy Rough Sets versus Rough Fuzzy Sets – An Interpretation and a Comparative Study using Concepts of Modal Logics.Technical Report No CI-30/98, University of Dortmund, Also in Proceedings EUFIT, Aachen, pp. 159–167 (1998)

    Google Scholar 

  21. Thiele, H.: Generalizing the explicit concept of rough set on the basis of modal logic. To appear in: Computational Intelligence in Theory and Practice. Advances in Soft Computing, Physica

    Google Scholar 

  22. Turunen, E.: Mathematics Behind Fuzzy Logics. Physica, Heidelberg (1999)

    Google Scholar 

  23. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–358 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ziarko, W.P. (ed.): Rough Sets, Fuzzy Sets and Knowledge Discovery. Springer, London (1994)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Radzikowska, A.M., Kerre, E.E. (2004). Fuzzy Rough Sets Based on Residuated Lattices. In: Peters, J.F., Skowron, A., Dubois, D., Grzymała-Busse, J.W., Inuiguchi, M., Polkowski, L. (eds) Transactions on Rough Sets II. Lecture Notes in Computer Science, vol 3135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27778-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27778-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23990-1

  • Online ISBN: 978-3-540-27778-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics