Nothing Special   »   [go: up one dir, main page]

Skip to main content

Bounding Learning Time in XCS

  • Conference paper
Genetic and Evolutionary Computation – GECCO 2004 (GECCO 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3103))

Included in the following conference series:

Abstract

It has been shown empirically that the XCS classifier system solves typical classification problems in a machine learning competitive way. However, until now, no learning time estimate has been derived analytically for the system. This paper introduces a time estimate that bounds the learning time of XCS until maximally accurate classifiers are found. We assume a domino convergence model in which each attribute is successively specialized to the correct value. It is shown that learning time in XCS scales polynomially in problem length and problem complexity and thus in a machine learning competitive way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Holland, J.H.: Processing and processors for schemata. In: Jacks, E.L. (ed.) Associative Information Techniques, pp. 127–146. American Elsevier, New York (1971)

    Google Scholar 

  2. Wilson, S.W.: ZCS: A zeroth level classifier system. Evolutionary Computation 2, 1–18 (1994)

    Article  Google Scholar 

  3. Bull, L., Hurst, J.: ZCS redux. Evolutionary Computation 10, 185–205 (2002)

    Article  Google Scholar 

  4. Wilson, S.W.: Classifier fitness based on accuracy. Evolutionary Computation 3, 149–175 (1995)

    Article  Google Scholar 

  5. Butz, M.V., Goldberg, D.E., Tharakunnel, K.: Analysis and improvement of fitness exploitation in XCS: Bounding models, tournament selection, and bilateral accuracy. Evolutionary Computation 11, 239–277 (2003)

    Article  Google Scholar 

  6. Bernadó, E., Llorà, X., Garrell, J.M.: XCS and GALE: A comparative study of two learning classifier systems and six other learning algorithms on classification tasks. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2001. LNCS (LNAI), vol. 2321, pp. 115–132. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Dixon, P.W., Corne, D.W., Oates, M.J.: A preliminary investigation of modified XCS as a generic data mining tool. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2001. LNCS (LNAI), vol. 2321, pp. 133–150. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Butz, M.V., Kovacs, T., Lanzi, P.L., Wilson, S.W.: How XCS evolves accurate classifiers. In: Proceedings of the Third Genetic and Evolutionary Computation Conference (GECCO-2001), pp. 927–934 (2001)

    Google Scholar 

  9. Butz, M.V., Pelikan, M.: Analyzing the evolutionary pressures in XCS. In: Proceedings of the Third Genetic and Evolutionary Computation Conference (GECCO-2001), pp. 935–942 (2001)

    Google Scholar 

  10. Butz, M.V., Kovacs, T., Lanzi, P.L., Wilson, S.W.: Toward a theory of generalization and learning in XCS. IEEE Transactions on Evolutionary Computation 8, 28–46 (2004)

    Article  Google Scholar 

  11. Holland, J.H., Reitman, J.S.: Cognitive systems based on adaptive algorithms. In: Waterman, D.A., Hayes-Roth, F. (eds.) Pattern directed inference systems, pp. 313–329. Academic Press, New York (1978)

    Google Scholar 

  12. Lanzi, P.L.: Learning classifier systems from a reinforcement learning perspective. Soft Computing: A Fusion of Foundations, Methodologies and Applications 6, 162–170 (2002)

    Article  MATH  Google Scholar 

  13. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975) second edition 1992

    Google Scholar 

  14. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading, MA (1989)

    Google Scholar 

  15. Butz, M.V., Sastry, K., Goldberg, D.E.: Tournament selection in XCS. In: Proceedings of the Fifth Genetic and Evolutionary Computation Conference (GECCO-2003), pp. 1857–1869 (2003)

    Google Scholar 

  16. Kovacs, T.: Towards a theory of strong overgeneral classifiers. Foundations of Genetic Algorithms 6 (2001)

    Google Scholar 

  17. Kovacs, T.: Deletion schemes for classifier systems. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 1999), pp. 329–336 (1999)

    Google Scholar 

  18. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  19. Thierens, D., Goldberg, D.E., Pereira, A.G.: Domino convergence, drift, and the temporal-salience structure of problems. In: Proceedings of the 1998 IEEE World Congress on Computational Intelligence, New York, NY, pp. 535–540. IEEE Press, Los Alamitos (1998)

    Chapter  Google Scholar 

  20. Wilson, S.W.: Generalization in the XCS classifier system. In: Genetic Programming 1998: Proceedings of the Third Annual Conference, pp. 665–674 (1998)

    Google Scholar 

  21. Bull, L.: Investigating fitness sharing in a simple payoff-based learning classifier system. Technical Report UWELCSG03-009, University of Western England, Learning Classifier System Group, Bristol, UK (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Butz, M.V., Goldberg, D.E., Lanzi, P.L. (2004). Bounding Learning Time in XCS. In: Deb, K. (eds) Genetic and Evolutionary Computation – GECCO 2004. GECCO 2004. Lecture Notes in Computer Science, vol 3103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24855-2_89

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24855-2_89

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22343-6

  • Online ISBN: 978-3-540-24855-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics