Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Genetic Approach for Gene Selection on Microarray Expression Data

  • Conference paper
Genetic and Evolutionary Computation – GECCO 2004 (GECCO 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3102))

Included in the following conference series:

Abstract

Microarrays allow simultaneous measurement of the expression levels of thousands of genes in cells under different physiological or disease states. Because the number of genes exceeds the number of samples, class prediction on microarray expression data leads to an extreme “curse of dimensionality” problem. A principal goal of these studies is to identify a subset of informative genes for class prediction to reduce the curse of dimensionality. We propose a novel genetic approach that selects a subset of predictive genes for classification on the basis of gene expression data. Our genetic algorithm maximizes correlation between genes and classes and minimizes intercorrelation among genes. We tested the genetic algorithm on leukemia data sets and obtained improved results over previous results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl Acad. Sci. USA 96, 6745–6750 (1999)

    Article  Google Scholar 

  2. Ben-Dor, A., Bruhn, L., Friedman, N., Nachman, I., Schummer, M., Yakhini, Z.: Tissue classification with gene expression profiles. In: The Fourth International Conference on Computational Molecular Biology (RECOMB 2000), ACM Press, New York (2000)

    Google Scholar 

  3. Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. J. Comput. Biol. 6, 281–297 (1999)

    Article  Google Scholar 

  4. Bittner, M., Meltzer, P., Trent, J.: Data analysis and integration: of steps and arrows. Nature Genetics 22, 213–215 (1999)

    Article  Google Scholar 

  5. Brown, P.O., Botstein, D.: Exploring the new world of the genome with DNA microarrays. Nature Genetics 21, 33–37 (1999)

    Article  Google Scholar 

  6. Bui, T.N., Moon, B.R.: Genetic algorithm and graph partitioning. IEEE Trans. on Computers 45(7), 841–855 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Efron, B.: The jacknife, the bootstrap, and other resampling plans. Society for Industrial and Applied Methematics (1982)

    Google Scholar 

  8. Efron, B., Tibshirani, R.: Cross-validation and the bootstrap: Estimating the error rate of a prediction rule. Dept. of Statistics, Stanford University (1995)

    Google Scholar 

  9. Getz, G., Levine, E., Domany, E.: Coupled two-way clustering analysis of gene microarray data. Proc. Natl Acad. Sci. USA 97, 12079–12084 (2000)

    Article  Google Scholar 

  10. Getz, G., Levine, E., Domany, E., Zhang, M.Q.: Superparamagnatic clustering of yeast gene expression profiles. Physica A 279, 457–464 (2000)

    Article  Google Scholar 

  11. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)

    Article  Google Scholar 

  12. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Machine Learning 46(1-3), 389–422 (2002)

    Article  MATH  Google Scholar 

  13. Hartuv, E., Schmitt, A.O., Lange, J., Meier-Ewert, S., Lehrach, H., Shamir, R.: An algorithm for clustering cDNA fingerprints. Genomics 66, 249–256 (2000)

    Article  Google Scholar 

  14. Li, L., Darden, T.A., Weinberg, C.R., Pedersen, L.G.: Gene assessment and sample classification for gene expression data using a genetic algorithm/k-nearest neighbor method. Combinatorial Chemistry & High Throughput Screening 4, 727–739 (2001)

    Google Scholar 

  15. Lockhart, D.J., Winzeler, E.A.: Genomics, gene expression and DNA arrays. Nature 405, 827–836 (2000)

    Article  Google Scholar 

  16. Iba, H., Ando, S.: Artificial immune system for classification of gene expression data. In: Genetic and Evolutionary Compatation Conference, pp. 1926–1937 (2003)

    Google Scholar 

  17. Sammon Jr., J.W.: A non-linear mapping for data structure analysis. IEEE Transactions on Computers 18, 401–409 (1969)

    Article  Google Scholar 

  18. Whitley, D., Kauth, J.: Genitor: A different genetic algorithm. In: Rocky Mountain Conference on Artificial Intelligence, pp. 118–130 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, YH., Lee, SY., Moon, BR. (2004). A Genetic Approach for Gene Selection on Microarray Expression Data. In: Deb, K. (eds) Genetic and Evolutionary Computation – GECCO 2004. GECCO 2004. Lecture Notes in Computer Science, vol 3102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24854-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24854-5_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22344-3

  • Online ISBN: 978-3-540-24854-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics