Nothing Special   »   [go: up one dir, main page]

Skip to main content

Typical Sequences Extraction and Recognition

  • Conference paper
Computer Vision in Human-Computer Interaction (CVHCI 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3058))

Abstract

This paper presented a temporal sequence analyzing method, aiming at the extraction of typical sequences from an unlabeled dataset. The extraction procedure is based on HMM training and hierarchical separation of WTOM (Weighted Transition Occurring Matrix). During the extraction, HMMs are built each for a kind of typical sequence. Then Threshold Model is used to segment and recognize continuous sequence. The method has been tested on unsupervised event analysis in video surveillance and model learning of athlete actions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berkhin, P.: Survey of Clustering Data Mining Techniques, http://citeseer.nj.nec.com/berkhin02survey.html

  2. Oates, T., Firoiu, L., Cohen, P.: Clustering Time Series with Hidden Markov Models and Dynamic Time Warping. In: IJCAI, Working Notes, pp. 17–21 (1999)

    Google Scholar 

  3. Hoppner, F.: Time Series Abstraction Methods - a Survey. In: Proceedings of GI Jahrestagung Informatik, Workshop on Know-ledge Discovery in Databases, pp. 777–786 (2002)

    Google Scholar 

  4. Rabiner, A.R.: A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceedings of the IEEE 77(2), 257–285 (1989)

    Article  Google Scholar 

  5. Smyth, P.: Clustering Sequences with Hidden Markov Models. In: Mozer, M.C., Jordan, M.I., Petsche, T. (eds.) Advances in Neural Information Processing, pp. 648–654. MIT Press, Cambridge (1997)

    Google Scholar 

  6. Brand, M.: Pattern Discovery via Entropy Minimization. In: Uncertainty 1999, AI & Statistics (1999)

    Google Scholar 

  7. Brand, M.: An Entropic Estimator for Structure Discovery. NIPS, 723–729 (1998)

    Google Scholar 

  8. Brand, M., Hertzmann, A.: Style machines. SIGGRAPH (2000)

    Google Scholar 

  9. Hyvarinen, A., Oja, E.: Independent Component Analysis: a Tutorial (1999), http://www.cis.hut.fi/~aapo/papers/IJCNN99_tutorialweb/

  10. Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. Computer Vision and Pattern Recognition, 731–738 (1997)

    Google Scholar 

  11. Gokcay, E., Principe, J.: Information Theoretic Clustering. PAMI (February 2002)

    Google Scholar 

  12. Stine, R.A.: Model Selection Using Information Theory and the MDL Principle, http://www-stat.wharton.upenn.edu/~bob/research/smr.pdf

  13. Vitanyi, P.M.B., Li, M.: Ideal MDL and its Relation to Bayesianism. In: Proc. ISIS: Information, Statistics and Induction in Science, pp. 282–291. World Scientific, Singapore (1996)

    Google Scholar 

  14. Lorette, A., Descombes, X., Zerubia, J.: Fully Unsupervised Fuzzy Clustering with Entropy Criterion. ICPR (2000)

    Google Scholar 

  15. Li, C., Biswas, G.: Improving Clustering with Hidden Markov Models Using Bayesian Model Selection. In: International Conference on Systems, Man, and Cybernetics, vol. 1, pp. 194–199 (2000)

    Google Scholar 

  16. Singer, Y., Warmth, M.K.: Training algorithms for Hidden Markov Models using entropy based distance functions. NIPS, 641–647 (1996)

    Google Scholar 

  17. Wolf, L., Shashua, A.: Kernel Principal Angles for Classification Machines with Applications to Image Sequence Interpretation

    Google Scholar 

  18. Lee, H.-K., Kim, J.H.: An HMM Based Threshold Model Approach for Gesture Recognition. PAMI (October 1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ma, G., Lin, X. (2004). Typical Sequences Extraction and Recognition. In: Sebe, N., Lew, M., Huang, T.S. (eds) Computer Vision in Human-Computer Interaction. CVHCI 2004. Lecture Notes in Computer Science, vol 3058. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24837-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24837-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22012-1

  • Online ISBN: 978-3-540-24837-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics