Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-View Face Image Synthesis Using Factorization Model

  • Conference paper
Computer Vision in Human-Computer Interaction (CVHCI 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3058))

Abstract

We present a sample-based method for synthesizing face images in a wide range of view. Here the ”human identity” and ”head pose” are regarded as two influence factors of face appearance and a factorization model is used to learn their interaction with a face database. Our method extends original bilinear factorization model to nonlinear case so that global optimum solution can be found in solving ”translation” task. Thus, some view of a new person’s face image is able to be ”translated” into other views. Experimental results show that the synthesized faces are quite similar to the ground-truth. The proposed method can be applied to a broad area of human computer interaction, such as face recognition across view or face synthesis in virtual reality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Vetter, T.: Synthesis of novel views from a single face image. International Journal of Computer Vision 28(2), 103–116 (1998)

    Article  MathSciNet  Google Scholar 

  2. Vetter, T., Poggio, T.: Linear object classes and image synthesis from a single example image. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 733–742 (1997)

    Article  Google Scholar 

  3. Blanz, V., Vetter, T.: Morphable model for the synthesis of 3D faces. In: Proceedings of the ACM SIGGRAPH Conference on Computer Graphics, pp. 187–194 (1999)

    Google Scholar 

  4. Seitz, S.M., Dyer, C.R.: View morphing. In: Proceedings of the ACM SIGGRAPH Conference on Computer Graphics, pp. 21–42 (1996)

    Google Scholar 

  5. Lanitis, A., Taylor, C.J., Cootes, T.F.: Automatic interpretation and coding of face images using flexible models. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 743–756 (1997)

    Article  Google Scholar 

  6. Cootes, T.F., Wheeler, G.V., Walker, K.N., Taylor, C.J.: View-based active appearance models. Image and Vision Computing 20(9-10), 657–664 (2002)

    Article  Google Scholar 

  7. Okada, K., Von der Malsburg, C: Analysis and synthesis of human faces with pose variations by a parametric piecewise linear subspace method. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 1761–1768 (2001)

    Google Scholar 

  8. Okada, K., Akamatsu, S., Von der Malsburg, C.: Analysis and synthesis of pose variations of human faces by a linear PCMAP model. In: Proceedings of the International Conference onAutomatic Face and Gesture Recognition, pp. 142–149 (2000)

    Google Scholar 

  9. Tenenbaum, J.B., Freeman, W.T.: Separating style and content with bilinear models. Neural Computation 12, 1247–1283 (2000)

    Article  Google Scholar 

  10. Chuang, E., Deshpande, H., Bregler, C.: Facial Expression Space Learning. In: Proceedings of Pacific Graphics (2002)

    Google Scholar 

  11. Grimes, D.B., Shon, A.P., Rao, R.P.N.: Probabilistic bilinear models for appearance-based vision. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2, pp. 1478–1485 (2003)

    Google Scholar 

  12. Davis, J.W., Gao, H.: Recognizing human action efforts: An adaptive three-mode PCA framework. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2, pp. 1463–1469 (2003)

    Google Scholar 

  13. Wang, H., Ahuja, N.: Facial expression decomposition. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2, pp. 958–965 (2003)

    Google Scholar 

  14. Du, Y., Lin, X.: Nonlinear factorization models using kernel approaches. In: Proceedings ofthe Asian Conference on Computer Vision, vol. 1, pp. 426–431 (2004)

    Google Scholar 

  15. Vapnik, V.N.: The nature of statistical learning theory. Springer, New York (1995)

    MATH  Google Scholar 

  16. Baudat, G., Anouar, F.: Generalized discriminant analysis using a kernel approach. Neural Computation 12(10), 2385–2404 (2000)

    Article  Google Scholar 

  17. Scholkopf, B., Smola, A.J., Muller, K.-R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10, 1299–1319 (1998)

    Article  Google Scholar 

  18. Mika, S., Scholkopf, B., Smola, A.J., Muller, K.-R., Scholz, M., Ratsch, G.: Kernel PCA and de-noising in feature spaces. Advances in Neural Information Processing Systems 11, 536–542 (1999)

    Google Scholar 

  19. Sim, T., Baker, S., Bsat, M.: The CMU Pose, Illumination, and Expression (PIE) Database. In: Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition (2002)

    Google Scholar 

  20. Romdhani, S., Gong, S., Psarrou, A.: A Multi-View Nonlinear Active Shape Model Using Kernel PCA. In: Proceedings ofthe British Machine Vision Conference, pp. 483–492 (1999)

    Google Scholar 

  21. http://www.ingber.com/ASA-README.html

  22. Shashua, A., Riklin-Raviv, T.: Quotient image: Class-based re-rendering and recognition with varying illuminations. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(3), 129–139 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Du, Y., Lin, X. (2004). Multi-View Face Image Synthesis Using Factorization Model. In: Sebe, N., Lew, M., Huang, T.S. (eds) Computer Vision in Human-Computer Interaction. CVHCI 2004. Lecture Notes in Computer Science, vol 3058. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24837-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24837-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22012-1

  • Online ISBN: 978-3-540-24837-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics