Nothing Special   »   [go: up one dir, main page]

Skip to main content

Authentic Emotion Detection in Real-Time Video

  • Conference paper
Computer Vision in Human-Computer Interaction (CVHCI 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3058))

  • 847 Accesses

Abstract

There is a growing trend toward emotional intelligence in human-computer interaction paradigms. In order to react appropriately to a human, the computer would need to have some perception of the emotional state of the human. We assert that the most informative channel for machine perception of emotions is through facial expressions in video. One current difficulty in evaluating automatic emotion detection is that there are currently no international databases which are based on authentic emotions. The current facial expression databases contain facial expressions which are not naturally linked to the emotional state of the test subject. Our contributions in this work are twofold: First, we create the first authentic facial expression database where the test subjects are showing the natural facial expressions based upon their emotional state. Second, we evaluate the several promising machine learning algorithms for emotion detection which include techniques such as Bayesian Networks, SVMs, and Decision trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aha, D.W.: Tolerating noisy, irrelevant and novel attributes in instance-based learning algorithms. International Journal of Man-Machine Studies 36(1), 267–287 (1992)

    Article  Google Scholar 

  2. Bartlett, M.S., Littlewort, I., Fasel, G., Movellan, J.R.: Real time face detection and expression recognition: Development and application to human-computer interaction. In: CVPR Workshop on Computer Vision and Pattern Recognition for Human-Computer Interaction (2003)

    Google Scholar 

  3. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning 36, 105–142 (1999)

    Article  Google Scholar 

  4. Bourel, F., Chibelushi, C., Low, A.: Robust facial expression recognition using a state-based model of spatially-localised facial dynamic. In: Int. Conference on Automatic Face and Gesture Recognition, pp. 113–118 (2002)

    Google Scholar 

  5. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  6. Clark, P., Niblett, T.: The CN2 induction algorithm. Machine Learning 3(4), 261–283 (1989)

    Google Scholar 

  7. Cohen, I., Sebe, N., Cozman, F.G., Huang, T.S.: Semi-supervised learning for facial expression recognition. In: ACM Workshop on Multimedia Information Retrieval, pp. 17–22 (2003)

    Google Scholar 

  8. Cost, S., Salzberg, S.: A weighted nearest neighbor algorithm for learning with symbolic features. Machine Learning 10(1), 57–78 (1993)

    Google Scholar 

  9. Donato, G., Bartlett, M.S., Hager, J.C., Ekman, P., Sejnowski, T.J.: Classifying facial actions. IEEE Trans. on Pattern Analysis and Machine Intelligence 21(10), 974–989 (1999)

    Article  Google Scholar 

  10. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. John Wiley and Sons, Chichester (1973)

    MATH  Google Scholar 

  11. Ekman, P.: Strong evidence for universals in facial expressions: A reply to Russell’s mistaken critique. Psychological Bulletin 115(2), 268–287 (1994)

    Article  Google Scholar 

  12. Ekman, P., Friesen, W.V.: Facial Action Coding System: Investigator’s Guide. Consulting Psychologists Press, Palo Alto (1978)

    Google Scholar 

  13. Fasel, B., Luettin, J.: Automatic facial expression analysis: A survey. Pattern Recognition 36, 259–275 (2003)

    Article  MATH  Google Scholar 

  14. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: International Conference on Machine Learning, pp. 148–156 (1996)

    Google Scholar 

  15. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine Learning 29(2), 131–163 (1997)

    Article  MATH  Google Scholar 

  16. Goleman, D.: Emotional Intelligence. Bantam Books, New York (1995)

    Google Scholar 

  17. Hertz, J., Krogh, A., Palmer, R.G.: Introduction to the Theory of Neural Computation. Addison-Wesley, Reading (1991)

    Google Scholar 

  18. Kanade, T., Cohn, J., Tian, Y.: Comprehensive database for facial expression analysis. In: Int. Conference on Automatic Face and Gesture Recognition, pp. 46–53 (2000)

    Google Scholar 

  19. Kohavi, R., Sommerfield, D., Dougherty, J.: Data mining using MLC++: A machine learning library in C++. International Journal on Artificial. International Journal on Artificial Intelligence Tools 6(4), 537–566 (1997)

    Article  Google Scholar 

  20. Littlestone, N.: Learning quickly when irrelevant attributes abound: A new linearthreshold algorithm. Machine Learning 10(1), 57–78 (1993)

    Google Scholar 

  21. Lyons, M., Akamatsu, A., Kamachi, M., Gyoba, J.: Coding facial expressions with Gabor wavelets. In: IEEE International Conference on Automatic Face and Gesture Recognition, pp. 200–205 (1998)

    Google Scholar 

  22. Murthy, S.K., Kasif, S., Salzberg, S.: A system for the induction of oblique decision trees. Journal of Artificial Intelligence Research 2, 1–33 (1994)

    MATH  Google Scholar 

  23. Oliver, N., Pentland, A., Bérard, F.: LAFTER: A real-time face and lips tracker with facial expression recognition. Pattern Recognition 33, 1369–1382 (2000)

    Article  Google Scholar 

  24. Pantic, M., Rothkrantz, L.J.M.: Automatic analysis of facial expressions: The state of the art. IEEE Trans. on PAMI 22(12), 1424–1445 (2000)

    Google Scholar 

  25. Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)

    Google Scholar 

  26. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufman, San Francisco (1993)

    Google Scholar 

  27. Salovey, P., Mayer, J.D.: Emotional intelligence. Imagination, Cognition, and Personality 9(3), 185–211 (1990)

    Google Scholar 

  28. Tao, H., Huang, T.S.: Connected vibrations: A modal analysis approach to non-rigid motion tracking. In: CVPR, pp. 735–740 (1998)

    Google Scholar 

  29. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  30. Zhang, Y., Ji, Q.: Facial expression understanding in image sequences using dynamic and active visual information fusion. In: ICCV, pp. 113–118 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sun, Y., Sebe, N., Lew, M.S., Gevers, T. (2004). Authentic Emotion Detection in Real-Time Video. In: Sebe, N., Lew, M., Huang, T.S. (eds) Computer Vision in Human-Computer Interaction. CVHCI 2004. Lecture Notes in Computer Science, vol 3058. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24837-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24837-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22012-1

  • Online ISBN: 978-3-540-24837-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics