Nothing Special   »   [go: up one dir, main page]

Skip to main content

Towards Optimizing Conjunctive Inductive Queries

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3056))

Included in the following conference series:

Abstract

Inductive queries are queries to an inductive database that generate a set of patterns in a data mining context. Inductive querying poses new challenges to database and data mining technology. We study conjunctive inductive queries, which are queries that can be written as a conjunction of a monotonic and an anti-monotonic subquery. We introduce the conjunctive inductive query optimization problem, which is concerned with minimizing the cost of computing the answer set to a conjunctive query. In the optimization problem, it is assumed that there are costs c a and c m associated to evaluating a pattern w.r.t. a monotonic and an anti-monotonic subquery respectively. The aim is then to minimize the total cost needed to compute all solutions to the query. Secondly, we present an algorithm that aims at optimizing conjunctive inductive queries in the context of the pattern domain of strings and evaluate it on a challenging data set in computational biology.

An early version of this paper was presented at the 2nd ECML/PKDD Workshop on Knowledge Discovery with Inductive Querying, Dubrovnik, 2003.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. VLDB (1994)

    Google Scholar 

  2. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proc. SIGMOD, pp. 207–216 (1993)

    Google Scholar 

  3. Bayardo, R.: Efficiently mining long patterns from databases. In: Proc. SIGMOD (1998)

    Google Scholar 

  4. Bucila, C., Gehrke, J., Kifer, D., White, W.: DualMiner: A dual pruning algorithm for itemsets with constraints. In: Proc. of SIGKDD (2002)

    Google Scholar 

  5. De Raedt, L., Kramer, S.: The levelwise version space algorithm and its application to molecular fragment finding. In: Proc. IJCAI (2001)

    Google Scholar 

  6. De Raedt, L., Jäger, M., Lee, S.D., Mannila, H.: A Theory of Inductive Query Answering. In: Proceedings IEEE ICDM (2002)

    Google Scholar 

  7. De Raedt, L.: A perspective on inductive databases. SIGKDD Explorations 4 (2) (2002)

    Google Scholar 

  8. Fischer, J.: Version Spaces im Contraint-Based Data Mining. Diplomarbeit. Albert-Ludwigs-University Freiburg (2003)

    Google Scholar 

  9. Goethals, B., Van den Bussche, J.: On supporting interactive association rule mining. In: Kambayashi, Y., Mohania, M., Tjoa, A.M. (eds.) DaWaK 2000. LNCS, vol. 1874, p. 307. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Gunopulos, D., Mannila, H., Saluja, S.: Discovering All Most Specific Sentences by Randomized Algorithms. In: Afrati, F.N., Kolaitis, P.G. (eds.) ICDT 1997. LNCS, vol. 1186, Springer, Heidelberg (1996)

    Google Scholar 

  11. Gunopulos, D., Khardon, R., Mannila, H., Toivonen, H.: Data mining, Hypergraph Transversals, and Machine Learning. In: Proceedings PODS (1997)

    Google Scholar 

  12. Han, J., Fu, Y., Koperski, K., Wang, W., Zaiane, O.: DMQL: A Data Mining Query Language for Relational Databases. In: Proc. SIGMOD 1996 Workshop on Research Issues on Data Mining and Knowledge Discovery (1996)

    Google Scholar 

  13. Han, J., Lakshmanan, L.V.S., Ng, R.T.: Constraint-Based, Multidimensional Data Mining. Computer 32(8), 46–50 (1999)

    Article  Google Scholar 

  14. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Proc. SIGMOD (2000)

    Google Scholar 

  15. Hirsh, H.: Generalizing Version Spaces. Machine Learning 17(1), 5–46 (1994)

    MATH  Google Scholar 

  16. Hirsh, H.: Theoretical underpinnings of versionspaces. In: Proc. IJCAI (1991)

    Google Scholar 

  17. Inokuchi, A., Washio, T., Motoda, H.: Complete Mining of Frequent Patterns from Graphs: Mining Graph Data. Machine Learning 50(3), 321–354 (2003)

    Article  MATH  Google Scholar 

  18. Kramer, S., De Raedt, L., Helma, C.: Molecular Feature Mining in HIV Data. In: Proc. SIGKDD (2001)

    Google Scholar 

  19. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery 1 (1997)

    Google Scholar 

  20. Mitchell, T.: Generalization as Search. Artificial Intelligence 18(2), 203–226 (1980)

    Article  Google Scholar 

  21. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  22. Ng, R.T., Lakshmanan, L.V.S., Han, J., Pang, A.: Exploratory mining and pruning optimizations of constrained associations rules. In: Proc. SIGMOD (1998)

    Google Scholar 

  23. NIC Genetic Sequence Database, Available at http://www.ncbi.nlm.nih.gov/Genbank/GenbankOverview.html

  24. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Weiner, P.: Linear pattern matching algorithm. In: Proc. 14th IEEE Symposium on Switching and Automata Theory, pp. 1–11 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fischer, J., De Raedt, L. (2004). Towards Optimizing Conjunctive Inductive Queries. In: Dai, H., Srikant, R., Zhang, C. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2004. Lecture Notes in Computer Science(), vol 3056. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24775-3_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24775-3_74

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22064-0

  • Online ISBN: 978-3-540-24775-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics