Abstract
Let S be a set of n points in three-dimensional Euclidean space. We consider the problem of positioning a plane π intersecting the convex hull of S such that {d(π,p):p ∈ S} is maximized. In a geometric setting, the problem asks for the widest empty slab through n points in space, where a slab is the open region of \(\mathbb R^{3}\) that is bounded by two parallel planes that intersect the convex hull of S. We give a characterization of the planes which are locally optimal and we show that the problem can be solved in O(n 3) time and O(n 2) space. We also consider several variants of the problem which include constraining the obnoxious plane to contain a given line or point and computing the widest empty slab for polyhedral obstacles. Finally, we show how to adapt our method for computing a largest empty annulus in the plane, improving the known time bound O(n 3log n) [6].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agarwal, P., Schwarzkopf, O., Sharir, M.: The overlay of lower envelopes and its applications. Discrete and Computational Geometry 15, 1–13 (1996)
Anagnostou, E.G., Guibas, L.J., Polimenis, V.G.: Topological sweeping in three dimensions. In: Asano, T., Imai, H., Ibaraki, T., Nishizeki, T. (eds.) SIGAL 1990. LNCS, vol. 450, pp. 310–317. Springer, Heidelberg (1990)
Aronov, B., Matousek, J., Sharir, M.: On the sum of Squares of cell Complexities in Hyperplane Arrangements. J. Combin. Theory Ser. A 65, 311–321 (1994)
Chattopadhyay, S., Das, P.: The k-dense corridor problems. Pattern Recogn. Lett. 11, 463–469 (1990)
Cheng, S.-W.: Widest empty L-shaped corridor. Inf. Proc. Lett. 58, 277–283 (1996)
Díaz-Báñez, J.M., Hurtado, F., Meijer, H., Rappaport, D., Sellarès, T.: The largest empty annulus problem. International Journal of Computational Geometry and Applications 13(4), 317–325 (2003)
Edelsbrunner, H.: Algorithms in Combinatorial Geometry. Springer, Heidelberg (1987)
Edelsbrunner, H., Guibas, L.: Topologically sweeping an arrangement. Journal of Computer and System Sciences 38, 165–194 (1989)
Follert, F., Schömer, E., Sellen, J., Smid, M., Thiel, C.: Computing a largest empty anchored cylinder and related problems. International Journal of Computational Geometry and Applications 7, 563–580 (1997)
Houle, M., Maciel, A.: Finding the widest empty corridor through a set of points. In: Toussaint, G.T. (ed.) Snapshots of computational and discrete geometry, 210-213. TR SOCS-88.11, dept of Computer Science, McGill University, Canada (1988)
Janardan, R., Preparata, F.P.: Widest-corridor problems. Nordic Journal of Computing 1, 231–245 (1994)
Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, Cambridge (1995)
Shin, C., Shin, S.Y., Chwa, K.: The widest k-dense corridor problems. Information Processing Letters 68(1), 25–31 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Díaz-Báñez, J.M., López, M.A., Sellarès, J.A. (2004). Computing Largest Empty Slabs. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds) Computational Science and Its Applications – ICCSA 2004. ICCSA 2004. Lecture Notes in Computer Science, vol 3045. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24767-8_11
Download citation
DOI: https://doi.org/10.1007/978-3-540-24767-8_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22057-2
Online ISBN: 978-3-540-24767-8
eBook Packages: Springer Book Archive