Nothing Special   »   [go: up one dir, main page]

Skip to main content

A More Secure and Efficacious TTS Signature Scheme

  • Conference paper
Information Security and Cryptology - ICISC 2003 (ICISC 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2971))

Included in the following conference series:

Abstract

In 2002 the authors introduced the new genre of digital signature scheme TTS (Tame Transformation Signatures) along with a sample scheme TTS/2. TTS is from the family of multivariate cryptographic schemes to which the NESSIE primitive SFLASH also belongs. It is a realization of T. Moh’s theory ([31]) for digital signatures, based on Tame Transformations or Tame Maps. Properties of multivariate cryptosystems are determined mainly by their central maps. TTS uses Tame Maps as their central portion for even greater speed than C-derived SFLASH family of schemes, which uses monomials in a large field for the central portion, previously usually acknowledged as fastest.

We show a small flaw in TTS/2 and present an improved TTS implementation which we call TTS/4. We will examine in some detail how well TTS/4 performs, how it stands up to previously known attacks, and why it represents an advance over TTS/2. Based on this topical assessment, we consider TTS in general and TTS/4 in particular to be competitive or superior in several aspects to other schemes, partly because the theoretical roots of TTS induce many good traits. One specific area in which TTS/4 should excel is in low-cost smartcards. It seems that the genre has great potential for practical deployment and deserves further attention by the cryptological community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akkar, M., Courtois, N., Duteuil, R., Goubin, L.: A Fast and Secure Implementation of SFLASH. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 267–278. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Bardet, M., Faugére, J.-C., Salvy, B.: Complexity of Gröbner Basis Computations for Regular Overdetermined Systems. Preprint and private communication

    Google Scholar 

  3. Biham, E.: Cryptanalysis of Patarin’s 2-Round Public Key System with S Boxes (2R). In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 408–416. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Caniglia, L., Galligo, A., Heintz, J.: Some New Effectivity Bounds in Computational Geometry. In: Mora, T. (ed.) AAECC 1988. LNCS, vol. 357, pp. 131–151. Springer, Heidelberg (1989)

    Google Scholar 

  5. Caniglia, L., Galligo, A., Heintz, J.: Equations for the Projective Closure and Effective Nullstellensatz. Discrete Applied Mathematics 33, 11–23 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, J.-M., Yang, B.-Y.: Tame Transformation Signatures with Topsy-Turvy Hashes. In: Proc. IWAP 2002, Taipei (2002)

    Google Scholar 

  7. Coppersmith, D., Stern, J., Vaudenay, S.: Attacks on the Birational Permutation Signature Schemes. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 435–443. Springer, Heidelberg (1994)

    Google Scholar 

  8. Coppersmith, D., Stern, J., Vaudenay, S.: The Security of the Birational Permutation Signature Schemes. Journal of Cryptology 10(3), 207–221 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Courtois, N., Goubin, L., Meier, W., Tacier, J.: Solving Underdefined Systems of Multivariate Quadratic Equations. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 211–227. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Courtois, N., Goubin, L., Patarin, J.: SFLASHv3, a Fast Asymmetric Signature Scheme (preprint), available at http://eprint.iacr.org/2003/211

  11. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equations. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Courtois, N., Patarin, J.: About the XL Algorithm over GF(2). In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 141–157. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Trans. Info. Theory IT-22(6), 644–654

    Google Scholar 

  14. Faugére, J.-C.: A New Efficient Algorithm for Computing Gröbner Bases (F4). Journal of Pure and Applied Algebra 139, 61–88 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Faugére, J.-C.: A New Efficient Algorithm for Computing Gröbner Bases without Reduction to Zero (F5). In: Proceedings of ISSAC, ACM Press, New York (2002)

    Google Scholar 

  16. Faugére, J.-C., Joux, A.: Algebraic Cryptanalysis of Hidden Field Equations (HFE) Cryptosystems Using Gröbner Bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 44–60. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Fell, H., Diffie, W.: Analysis of a Public Key Approach Based on Polynomial Substitution. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 340–349. Springer, Heidelberg (1986)

    Google Scholar 

  18. Garey, M., Johnson, D.: Computers and Intractability, A Guide to the Theory of NP-completeness, p. 251 (1979)

    Google Scholar 

  19. Geiselmann, W., Steinwandt, R., Beth, T.: Attacking the Affine Parts of SFLASH. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 355–359. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  20. Geiselmann, W., Steinwandt, R., Beth, T.: Revealing 441 Key Bits of sflash v2. In: Third NESSIE Workshop (2002)

    Google Scholar 

  21. Gilbert, H., Minier, M.: Cryptanalysis of SFLASH. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 288–298. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  22. Goubin, L., Courtois, N.: Cryptanalysis of the TTM Cryptosystem. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  23. Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero, Parts I and II. Annals of Mathematics 79(1964), 109–203, 205–326

    Google Scholar 

  24. Imai, H., Matsumoto, T.: Algebraic Methods for Constructing Asymmetric Cryptosystems. In: Calmet, J. (ed.) AAECC 1985. LNCS, vol. 229, pp. 108–119. Springer, Heidelberg (1986)

    Google Scholar 

  25. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar Signature Schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999)

    Google Scholar 

  26. Kipnis, A., Shamir, A.: Cryptanalysis of the Oil and Vinegar Signature Scheme. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer, Heidelberg (1998)

    Google Scholar 

  27. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE Public Key Cryptosystem by Relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30. Springer, Heidelberg (1999)

    Google Scholar 

  28. Lazard, D.: Gröbner Bases, Gaussian Elimination and Resolution of Systems of Algebraic Equations. In: van Hulzen, J.A. (ed.) ISSAC 1983 and EUROCAL 1983. LNCS, vol. 162, pp. 146–156. Springer, Heidelberg (1983)

    Google Scholar 

  29. Lucier, B.: Cryptography, Finite Fields, and AltiVec, http://www.simdtech.org/apps/group_public/download.php/22/Cryptography.pdf

  30. Matsumoto, T., Imai, H.: Public Quadratic Polynomial-Tuples for Efficient Signature-Verification and Message-Encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)

    Google Scholar 

  31. Moh, T.: A Public Key System with Signature and Master Key Functions. Communications in Algebra 27, 2207–2222 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  32. Moh, T.: On The Method of XL and Its Inefficiency Against TTM, available at http://eprint.iacr.org/2001/047

  33. Moh, T., Chen, J.-M.: On the Goubin-Courtois Attack on TTM, available at http://eprint.iacr.org/2001/072

  34. NESSIE Security Report, V2.0, available at http://www.cryptonessie.org

  35. Performance of Optimized Implementations of the NESSIE Primitives, V2.0, available at http://www.cryptonessie.org

  36. Ong, H., Schnorr, C., Shamir, A.: A Fast Signature Scheme Based on Quadratic Equations. In: 16th ACM Symposium on Theory of Computations, pp. 208–216 (1984)

    Google Scholar 

  37. Patarin, J.: Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Eurocrypt 1988. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261. Springer, Heidelberg (1995)

    Google Scholar 

  38. Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New Families of Asymmetric Algorithms. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)

    Google Scholar 

  39. Patarin, J., Goubin, L., Courtois, N.: Improved Algorithms for Isomorphism of Polynomials. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 184–200. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  40. Patarin, J., Goubin, L., Courtois, N.: C\(^{*}_{-+}\) and HM: Variations Around Two Schemes of T. Matsumoto and H. Imai. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 35–49. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  41. Patarin, J., Courtois, N., Goubin, L.: QUARTZ, 128-Bit Long Digital Signatures. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 282–297. Springer, Heidelberg (2001), Available at http://www.cryptonessie.org

    Chapter  Google Scholar 

  42. Patarin, J., Courtois, N., Goubin, L.: FLASH, a Fast Multivariate Signature Algorithm. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 298–307. Springer, Heidelberg (2001), Also http://www.cryptonessie.org

    Chapter  Google Scholar 

  43. Shamir, A.: Efficient Signature Schemes Based on Birational Permutations. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 1–12. Springer, Heidelberg (1994)

    Google Scholar 

  44. Shamir, A., Tromer, E.: Factoring Large Numbers with the TWIRL Device. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 1–26. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  45. Theobald, T.: How to Break Shamir’s Asymmetric Basis. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 136–147. Springer, Heidelberg (1995)

    Google Scholar 

  46. Ye, D., Dai, Z., Lam, K.: Decomposing Attacks on Asymmetric Cryptography Based on Mapping Compositions. Journal of Cryptology 14(2), 137–150 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  47. Ye, D., Lam, K., Dai, Z.: Cryptanalysis of “2R” Schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 315–325. Springer, Heidelberg (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, JM., Yang, BY. (2004). A More Secure and Efficacious TTS Signature Scheme. In: Lim, JI., Lee, DH. (eds) Information Security and Cryptology - ICISC 2003. ICISC 2003. Lecture Notes in Computer Science, vol 2971. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24691-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24691-6_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21376-5

  • Online ISBN: 978-3-540-24691-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics