Nothing Special   »   [go: up one dir, main page]

Skip to main content

A General Expansion Method Using Efficient Endomorphisms

  • Conference paper
Information Security and Cryptology - ICISC 2003 (ICISC 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2971))

Included in the following conference series:

Abstract

There are various expansion methods to accelerate scalar multiplication on special types of elliptic curves. In this paper we present a general expansion method that uses efficient endomorphisms. We first show that the set of all endomorphisms over a non-supersingular elliptic curve E is isomorphic to Z[ ω ] = { a + | a,bin Z }, where ω is an algebraic integer with the smallest norm in an imaginary quadratic field, if ω is an endomorphism over E. Then we present a new division algorithm in Z[ ω ], by which an integer k can be expanded by the Frobenius endomorphism and ω. If ω is more efficient than a point doubling, we can use it to improve the performance of scalar multiplication by replacing some point doublings with the ω maps. As an instance of this general method, we give a new expansion method using the efficiently computable endomorphisms used by Ciet et al. [1].

This work was supported by the MOST grant M6-0203-00-0039.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ciet, M., Lange, T., Sica, F., Quisquater, J.J.: Improved algorithms for efficient arithmetic on elliptic curves using fast endomorphisms. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 388–400. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Koblitz, N.: CM-curves with good cryptographic properties. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 279–287. Springer, Heidelberg (1992)

    Google Scholar 

  3. Meier, W., Staffelbach, O.: Efficient multiplication on certain non-supersingular elliptic curves. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 333–344. Springer, Heidelberg (1993)

    Google Scholar 

  4. Müller, V.: Fast multiplication on elliptic curves over small fields of characteristic two. Journal of Cryptology 11, 219–234 (1998)

    Article  MATH  Google Scholar 

  5. Cheon, J., Park, S., Park, S., Kim, D.: Two efficient algorithms for arithmetic of elliptic curves using Frobenius map. In: Imai, H., Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 195–202. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  6. Solinas, J.: An improved algorithm for arithmetic on a family of elliptic curves. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 357–371. Springer, Heidelberg (1997)

    Google Scholar 

  7. Solinas, J.: Efficient arithmetic on Koblitz curves. Designs, Codes and Cryptography 19, 195–249 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Smart, N.: Elliptic curve cryptosystems over small fields of odd characteristic. Journal of Cryptology 12, 141–151 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kobayashi, T., Morita, H., Kobayashi, K., Hoshino, F.: Fast elliptic curve algorithm combining Frobenius map and table reference to adapt to higher characteristic. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 176–189. Springer, Heidelberg (1999)

    Google Scholar 

  10. Kobayashi, T.: Base-φ method for elliptic curves over OEF. IEICE Trans. Fundamentals E83-A, 679–686 (2000)

    Google Scholar 

  11. Lim, C., Hwang, H.: Speeding up elliptic scalar multiplication with precomputation. In: Song, J.S. (ed.) ICISC 1999. LNCS, vol. 1787, pp. 102–119. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Gallant, R., Lambert, R., Vanstone, S.: Faster point multiplication on elliptic curves with efficient endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 190–200. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Park, T., Lee, M., Park, K.: New frobenius expansions for elliptic curves with efficient endomorphisms. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 264–282. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Silverman, J.: The Arithmetic of Elliptic Curves. Springer, Heidelberg (1986)

    MATH  Google Scholar 

  15. Hardy, G., Wright, E.: An Introduction to the Theory of Numbers, 3rd edn. Oxford University Press, Oxford (1954)

    MATH  Google Scholar 

  16. Gilbert, W.: Radix representations of quadratic fields. J. Math. Anal. Appl. 83, 264–274 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  17. Cohen, H.: A Course in Computational Algebraic Number Theory, 3rd edn. Springer, Heidelberg (1996)

    Google Scholar 

  18. Cox, D.: Primes of the Form x 2 + ny 2. Fermat, Class Field Theory and Complex Multiplication. Wiley, Chichester (1998)

    Google Scholar 

  19. Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 51–65. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  20. Bailey, D., Paar, C.: Optimal extension fields for fast arithmetic in public key algorithms. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 472–485. Springer, Heidelberg (1998)

    Google Scholar 

  21. Bailey, D., Paar, C.: Efficient arithmetic in finite field extensions with application in elliptic curve cryptography. Journal of Cryptology 14, 153–176 (2001)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Park, TJ., Lee, MK., Kim, Ey., Park, K. (2004). A General Expansion Method Using Efficient Endomorphisms. In: Lim, JI., Lee, DH. (eds) Information Security and Cryptology - ICISC 2003. ICISC 2003. Lecture Notes in Computer Science, vol 2971. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24691-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24691-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21376-5

  • Online ISBN: 978-3-540-24691-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics