Abstract
There are various expansion methods to accelerate scalar multiplication on special types of elliptic curves. In this paper we present a general expansion method that uses efficient endomorphisms. We first show that the set of all endomorphisms over a non-supersingular elliptic curve E is isomorphic to Z[ ω ] = { a + bω | a,bin Z }, where ω is an algebraic integer with the smallest norm in an imaginary quadratic field, if ω is an endomorphism over E. Then we present a new division algorithm in Z[ ω ], by which an integer k can be expanded by the Frobenius endomorphism and ω. If ω is more efficient than a point doubling, we can use it to improve the performance of scalar multiplication by replacing some point doublings with the ω maps. As an instance of this general method, we give a new expansion method using the efficiently computable endomorphisms used by Ciet et al. [1].
This work was supported by the MOST grant M6-0203-00-0039.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ciet, M., Lange, T., Sica, F., Quisquater, J.J.: Improved algorithms for efficient arithmetic on elliptic curves using fast endomorphisms. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 388–400. Springer, Heidelberg (2003)
Koblitz, N.: CM-curves with good cryptographic properties. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 279–287. Springer, Heidelberg (1992)
Meier, W., Staffelbach, O.: Efficient multiplication on certain non-supersingular elliptic curves. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 333–344. Springer, Heidelberg (1993)
Müller, V.: Fast multiplication on elliptic curves over small fields of characteristic two. Journal of Cryptology 11, 219–234 (1998)
Cheon, J., Park, S., Park, S., Kim, D.: Two efficient algorithms for arithmetic of elliptic curves using Frobenius map. In: Imai, H., Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 195–202. Springer, Heidelberg (1998)
Solinas, J.: An improved algorithm for arithmetic on a family of elliptic curves. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 357–371. Springer, Heidelberg (1997)
Solinas, J.: Efficient arithmetic on Koblitz curves. Designs, Codes and Cryptography 19, 195–249 (2000)
Smart, N.: Elliptic curve cryptosystems over small fields of odd characteristic. Journal of Cryptology 12, 141–151 (1999)
Kobayashi, T., Morita, H., Kobayashi, K., Hoshino, F.: Fast elliptic curve algorithm combining Frobenius map and table reference to adapt to higher characteristic. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 176–189. Springer, Heidelberg (1999)
Kobayashi, T.: Base-φ method for elliptic curves over OEF. IEICE Trans. Fundamentals E83-A, 679–686 (2000)
Lim, C., Hwang, H.: Speeding up elliptic scalar multiplication with precomputation. In: Song, J.S. (ed.) ICISC 1999. LNCS, vol. 1787, pp. 102–119. Springer, Heidelberg (2000)
Gallant, R., Lambert, R., Vanstone, S.: Faster point multiplication on elliptic curves with efficient endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 190–200. Springer, Heidelberg (2001)
Park, T., Lee, M., Park, K.: New frobenius expansions for elliptic curves with efficient endomorphisms. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 264–282. Springer, Heidelberg (2003)
Silverman, J.: The Arithmetic of Elliptic Curves. Springer, Heidelberg (1986)
Hardy, G., Wright, E.: An Introduction to the Theory of Numbers, 3rd edn. Oxford University Press, Oxford (1954)
Gilbert, W.: Radix representations of quadratic fields. J. Math. Anal. Appl. 83, 264–274 (1981)
Cohen, H.: A Course in Computational Algebraic Number Theory, 3rd edn. Springer, Heidelberg (1996)
Cox, D.: Primes of the Form x 2 + ny 2. Fermat, Class Field Theory and Complex Multiplication. Wiley, Chichester (1998)
Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 51–65. Springer, Heidelberg (1998)
Bailey, D., Paar, C.: Optimal extension fields for fast arithmetic in public key algorithms. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 472–485. Springer, Heidelberg (1998)
Bailey, D., Paar, C.: Efficient arithmetic in finite field extensions with application in elliptic curve cryptography. Journal of Cryptology 14, 153–176 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Park, TJ., Lee, MK., Kim, Ey., Park, K. (2004). A General Expansion Method Using Efficient Endomorphisms. In: Lim, JI., Lee, DH. (eds) Information Security and Cryptology - ICISC 2003. ICISC 2003. Lecture Notes in Computer Science, vol 2971. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24691-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-540-24691-6_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-21376-5
Online ISBN: 978-3-540-24691-6
eBook Packages: Springer Book Archive