Nothing Special   »   [go: up one dir, main page]

Skip to main content

Monte Carlo Approach for Switching State-Space Models

  • Conference paper
Innovations in Applied Artificial Intelligence (IEA/AIE 2004)

Abstract

In this paper we present a Monte Carlo EM algorithm for learning the parameters of a state-space model with a Markov switching. Since the expectations in the E step are intractable, we consider an implementation based on the Gibbs sample. The rate of convergence is improved using a nesting algorithm and Rao-Blackwellised forms. We illustrate the performance of the proposed method for simulated and experimental physiological data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kim, C.J., Nelson, C.R.: State Space Models with Regime Switching. The MIT Press, Cambridge (1999)

    Google Scholar 

  2. Shumway, R.H., Stoffer, D.S.: Dynamic Linear Models with Switching. J. Amer. Stat. Asoc. 86, 763–769 (1991)

    Article  MathSciNet  Google Scholar 

  3. Ghahramani, Z., Hinton, G.E.: Variational Learning for Switching State-Space Models. Neural Computation 12(4), 963–996 (2000)

    Article  Google Scholar 

  4. Shumway, R.H., Stoffer, D.S.: An Approach to Time Series Smoothing and Forecasting Using the EM Algorithm. J. T Ser. Anal. 3(4), 253–264 (1982)

    Article  MATH  Google Scholar 

  5. McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  6. Neal, R.M., Hinton, G.E.: A New View of the EM Algorithm that Justifies Incremental, Sparse, and Other Variants. In: Jordan, M.I. (ed.) Learning in Graphical Models, Kluwer Academic Press, Dordrecht (1998)

    Google Scholar 

  7. Wei, G.C.G., Tanner, M.A.: A Monte Carlo Implementation of the EM Algorithm and the Poor Men’s Data Augmentation Algorithm. J. Amer. Statist. Assoc. 85, 699–704 (1990)

    Article  Google Scholar 

  8. Carter, C.K., Kohn, R.: On Gibbs Sampling for State Space Models. Biometrika 81(3), 541–553 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Van Dyk, D.A.: Nesting EM Algorithms for Computational Efficiency. Statist. Sinica 10, 203–225 (2000)

    MATH  MathSciNet  Google Scholar 

  10. Tierney, L.: Markov Chains for Exploring Posterior Distributions. Ann. Statist. 22(4), 1701–1728 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  11. Diebolt, J., Robert, C.P.: Estimation of Finite Mixture Distributions through Bayesian Sampling. J.R. Statist. Soc. B 56(2), 363–375 (1994)

    MATH  MathSciNet  Google Scholar 

  12. Newton, M.A., Raftery, A.E.: Approximate Bayesian Inference with the Weighted Likelihood Bootstrap. J.R. Statist. Soc.B. 56(1), 3–48 (1994)

    MATH  MathSciNet  Google Scholar 

  13. Durbin, J., Koopman, S.J.: A Simple and Efficient Simulation Smoother for State- Space Time Series Analysis. Biometrika 89(3), 603–615 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Popescu, C., Wong, Y.S. (2004). Monte Carlo Approach for Switching State-Space Models. In: Orchard, B., Yang, C., Ali, M. (eds) Innovations in Applied Artificial Intelligence. IEA/AIE 2004. Lecture Notes in Computer Science(), vol 3029. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24677-0_97

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24677-0_97

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22007-7

  • Online ISBN: 978-3-540-24677-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics