Nothing Special   »   [go: up one dir, main page]

Skip to main content

Locating Oil Spill in SAR Images Using Wavelets and Region Growing

  • Conference paper
Innovations in Applied Artificial Intelligence (IEA/AIE 2004)

Abstract

This paper presents an algorithm for spots detection in Synthetic Aperture Radar (SAR) images that can be used to support environmental remote monitoring. Monitoring areas with high frequency of oil spillage by accidental or illegal oil discharges can prevent marine damage spreading. But the presence of speckle noise in SAR images limits the visual interpretation of scenes because it obscures the content. Thus, to get reliable data interpretation and quantitative spots measurements, it is recommended to applying speckle filtering schemes. We propose an algorithm to locate dark areas in the sea that are candidate to be oil slicks by combining region growing approach and multiscale analysis. The multiscale analysis employed by the undecimated wavelet smooths the speckle noise in SAR images while enhances edges. The proposed algorithm provides a better segmentation result that is achieved by a modified region growing approach. The algorithms were tested in real SAR images with oil spillages in the sea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Marghany, M.: Radarsat Automatic Algorithms for Detecting Coastal Oil Spill Pollution. Asian Journal of Geoinformatics 3(2), 191–196 (2001)

    Google Scholar 

  2. Trivero, P., Fiscella, B., Gomez, F., Pavese, P.: SAR Detection and Characterization of Sea surface Slicks. Int. J. Remote Sensing 19, 543–548 (1988)

    Article  Google Scholar 

  3. Stringer, W.J., Dean, K.G., Guritz, R.M., Garbeil, H.M., Groves, J.E., Ahlnaes, K.: Detection of Petroleum Spilled from the MV Exxon Valdez. Int. J. Remote Sensing 13(5), 799–824 (1992)

    Article  Google Scholar 

  4. Solberg, A.H.S., Storvik, G., Solberg, R., Volden, E.: Automatic Detection of oil Spills in ERS SAR Images. IEEE Trans. on Geoscience and Remote Sensing 37(4), 1916–1924 (1999)

    Article  Google Scholar 

  5. Liu, A.K., Peng, C.Y., Chang, S.Y.-S.: Wavelet Analysis of Satellite Image for Coastal Watch. IEEE Int. Journ. of Oceanic Engineering 22(1) (1997)

    Google Scholar 

  6. Del Frate, F.S., Petrocchi, A., Lichtenegger, J., Calabresi, G.: Neural Networks for Oil Spill Detection Using ERS-SAR Data. IEEE Trans. on Geoscience and Remote Sensing 38(5), 2282–2287 (2000)

    Article  Google Scholar 

  7. Malladi, R., Sethian, J.A.: Image Processing via Level Set Curvature Flow. Proc. Natl. Acad. of Sci. 92(15), 7046–7050 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Mallat, S.G.: A Wavelet Tour of Signal Processing, 2nd edn. Academic Press, Cambrige (1998)

    MATH  Google Scholar 

  9. Starck, J.L., Murtagh, F., Bijaoui, A.: Image Processing and Data Analysis: The Muliscale Approach. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  10. Medeiros, F.N.S., Mascarenhas, N.D.A., Marques, R.C.P., Laprano, C.M.: Edge Preserving Wavelet Speckle Filtering. In: Southwest Symposium on Image Analysis and Interpretation, Santa Fe, New Mexico, pp. 281–285 (2002)

    Google Scholar 

  11. Gonzalez, R.C., Woods, R.E.: Processamento de Imagens Digital. Edgard Blücher Ltda, São Paulo, Brazil (2000)

    Google Scholar 

  12. Sita, G., Ramakrishnan, A.G.: Wavelet Domain Nonlinear Filtering for Evoked Potential Signal Enhancement. Computers and Biomedical Research 33(6), 431–446 (2000)

    Article  Google Scholar 

  13. Marques, R.C.P., Laprano, C.M., Medeiros, F.N.S.: Multiscale Denoising Algorithm Based on the à Trous Algorithm. In: Proceedings of SIBGRAPI 2002 - XV Brazilian Symposim on Computer Graphics and Image Processing, Fortaleza, Ceará, Brazil, p. 400 (2002)

    Google Scholar 

  14. Lombardo, P., Oliver, C.J.: Optimum Detection and Segmentation of Oil-Slicks with Polarimetric SAR Data. In: IEEE International Radar Conference, pp. 122–127 (2000)

    Google Scholar 

  15. Glasbey, C.A., Horgan, G.W.: Image analysis for the biologic sciences. John Wiley & Sons, Chichester (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Araújo, R.T.S., de Medeiros, F.N.S., Costa, R.C.S., Marques, R.C.P., Moreira, R.B., Silva, J.L. (2004). Locating Oil Spill in SAR Images Using Wavelets and Region Growing. In: Orchard, B., Yang, C., Ali, M. (eds) Innovations in Applied Artificial Intelligence. IEA/AIE 2004. Lecture Notes in Computer Science(), vol 3029. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24677-0_121

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24677-0_121

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22007-7

  • Online ISBN: 978-3-540-24677-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics