Abstract
Given a finite set \(\mathcal{C} := \{ C_1, \ldots, C_n\}\) of description logic concepts, we are interested in computing the subsumption hierarchy of all least common subsumers of subsets of \(\mathcal{C}\) as well as the hierarchy of all conjunctions of subsets of \(\mathcal{C}\). These hierarchies can be used to support the bottom-up construction of description logic knowledge bases. The point is to compute the first hierarchy without having to compute the least common subsumer for all subsets of \(\mathcal{C}\), and the second hierarchy without having to check all possible pairs of such conjunctions explicitly for subsumption. We will show that methods from formal concept analysis developed for computing concept lattices can be employed for this purpose.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baader, F.: Computing a minimal representation of the subsumption lattice of all conjunctions of concepts defined in a terminology. In: Ellis, G., Levinson, R.A., Fall, A., Dahl, V. (eds.) Knowledge Retrieval, Use and Storage for Efficiency: Proc. of the 1st Int. KRUSE Symposium, pp. 168–178 (1995)
Baader, F.: Computing the least common subsumer in the description logic EL w.r.t. terminological cycles with descriptive semantics. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS 2003. LNCS, vol. 2746, pp. 117–130. Springer, Heidelberg (2003)
Baader, F.: The instance problem and the most specific concept in the description logic EL w.r.t. terminological cycles with descriptive semantics. In: Günter, A., Kruse, R., Neumann, B. (eds.) KI 2003. LNCS (LNAI), vol. 2821, pp. 64–78. Springer, Heidelberg (2003)
Baader, F.: Least common subsumers and most specific concepts in a description logic with existential restrictions and terminological cycles. In: Gottlob, G., Walsh, T. (eds.) Proceedings of the 18th International Joint Conference on Artificial Intelligence, pp. 319–324. Morgan Kaufmann, San Francisco (2003)
Baader, F.: Terminological cycles in a description logic with existential restrictions. In: Gottlob, G., Walsh, T. (eds.) Proceedings of the 18th International Joint Conference on Artificial Intelligence, pp. 325–330. Morgan Kaufmann, San Francisco (2003)
Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)
Baader, F., Franconi, E., Hollunder, B., Nebel, B., Profitlich, H.J.: An empirical analysis of optimization techniques for terminological representation systems or: Making KRIS get a move on. Applied Artificial Intelligence. Special Issue on Knowledge Base Management 4, 109–132 (1994)
Baader, F., Küsters, R.: Computing the least common subsumer and the most specific concept in the presence of cyclic ALN-concept descriptions. In: Herzog, O. (ed.) KI 1998. LNCS, vol. 1504, pp. 129–140. Springer, Heidelberg (1998)
Baader, F., Küsters, R., Molitor, R.: Computing least common subsumers in description logics with existential restrictions. In: Proc. of the 16th Int. Joint Conf. on Artificial Intelligence (IJCAI 1999), pp. 96–101 (1999)
Baader, F., Molitor, R.: Building and structuring description logic knowledge bases using least common subsumers and concept analysis. In: Ganter, B., Mineau, G. (eds.) ICCS 2000. LNCS, vol. 1867, pp. 290–303. Springer, Heidelberg (2000)
Baader, F., Sattler, U.: An overview of tableau algorithms for description logics. Studia Logica 69, 5–40 (2001)
Cohen, W.W., Hirsh, H.: Learning the CLASSIC description logics: Theorethical and experimental results. In: Doyle, J., Sandewall, E., Torasso, P. (eds.) Proc. of the 4th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 1994), pp. 121–133 (1994)
Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability of propositional horn formulae. Journal of Logic Programming 1(3), 267–284 (1984)
Duquenne, V.: Contextual implications between attributes and some representational properties for finite lattices. In: Ganter, B., Wille, R., Wolf, K.E. (eds.) Beiträge zur Begriffsanalyse, pp. 213–239. B.I. Wissenschaftsverlag, Mannheim (1987)
Frazier, M., Pitt, L.: CLASSIC learning. Machine Learning 25, 151–193 (1996)
Ganter, B.: Finding all closed sets: A general approach. Order 8, 283–290 (1991)
Ganter, B.: Attribute exploration with background knowledge. Theoretical Computer Science 217(2), 215–233 (1999)
Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer, Heidelberg (2001)
Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin (1999)
Haarslev, V., Möller, R.: High performance reasoning with very large knowledge bases: A practical case study. In: Proc. of the 17th Int. Joint Conf. on Artificial Intelligence, IJCAI 2001 (2001)
Haarslev, V., Möller, R.: RACER system description. In: Proc. of the Int. Joint Conf. on Automated Reasoning, IJCAR 2001 (2001)
Horrocks, I.: Using an expressive description logic: FaCT or fiction. In: Proc. of the 6th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 1998), pp. 636–647 (1998)
Küsters, R., Borgida, A.: What’s in an attribute? Consequences for the least common subsumer. J. of Artificial Intelligence Research 14, 167–203 (2001)
Küsters, R., Molitor, R.: Approximating most specific concepts in description logics with existential restrictions. In: Baader, F., Brewka, G., Eiter, T. (eds.) KI 2001. LNCS (LNAI), vol. 2174, pp. 33–47. Springer, Heidelberg (2001)
Küsters, R., Molitor, R.: Computing least common subsumers in ALEN. In: Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001), pp. 219–224 (2001)
Lutz, C.: Complexity of terminological reasoning revisited. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS, vol. 1705, pp. 181–200. Springer, Heidelberg (1999)
Marquardt, W.: Trends in computer-aided process modeling. Computers and Chemical Engineering 20(6/7), 591–609 (1996)
Molitor, R.: Unterstützung der Modellierung verfahrenstechnischer Prozesse durch Nicht-Standardinferenzen in Beschreibungslogiken (Supporting the Modelling of of Chemical Processes by Using Non-standard Inferences in Description Logics). PhD thesis, LuFG Theoretical Computer Science, RWTH-Aachen, Germany (2000) (in German)
Nassiri, M.: Berechnung einer erweiterten Subsumtionshierarchie (Computation of an extended subsumption hierarchy). Diploma thesis, RWTH Aachen, Germany (1997) (in German)
Prediger, S.: Terminologische Merkmalslogik in der Formalen Begriffsanalyse. In: [37] (2000)
Prediger, S., Stumme, G.: Theory-driven logical scaling: Conceptual information systems meet description logics. In: Franconi, E., Kifer, M. (eds.) Proc. of the 6th Int. Workshop on Knowledge Representation meets Databases, KRDB 1999 (1999)
Rector, A., Horrocks, I.: Experience building a large, re-usable medical ontology using a description logic with transitivity and concept inclusions. In: Proceedings of the Workshop on Ontological Engineering, AAAI Spring Symposium (AAAI 1997), Stanford, CA, AAAI Press, Menlo Park (1997)
Rudolf, S.: An FCA method for the extensional exploration of relational data. In: Ganter, B., de Moor, A. (eds.) Using Conceptual Structures – Contributions to ICCS 2003, Shaker Verlag, Aachen (2003)
Sattler, U.: Terminological Knowledge Representation Systems in a Process Engineering Application. PhD thesis, LuFG Theoretical Computer Science, RWTH Aachen, Germany (1998)
Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. Artificial Intelligence 48(1), 1–26 (1991)
Schultz, S., Hahn, U.: Knowledge engineering by large-scale knowledge reuse—experience from the medical domain. In: Cohn, A.G., Giunchiglia, F., Selman, B. (eds.) Proc. of the 7th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2000), pp. 601–610. Morgan Kaufmann, San Francisco (2000)
Stumme, G., Wille, R.: Begriffliche Wissensverarbeitung – Methoden und Anwendungen. Springer, Heidelberg (2000)
Vogt, F.: Formale Begriffsanalyse mit C++. Springer, Heidelberg (1996)
Zickwolff, M.: Rule Exploration: First Order Logic in Formal Concept Analysis. PhD thesis, TH Darmstadt, Germany (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baader, F., Sertkaya, B. (2004). Applying Formal Concept Analysis to Description Logics. In: Eklund, P. (eds) Concept Lattices. ICFCA 2004. Lecture Notes in Computer Science(), vol 2961. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24651-0_24
Download citation
DOI: https://doi.org/10.1007/978-3-540-24651-0_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-21043-6
Online ISBN: 978-3-540-24651-0
eBook Packages: Springer Book Archive